Регуляция пищевого поведения

Регуляция пищевого поведения осуществляется рядом структур ЦНС и прежде всего двух взаимодействующих центров - центром голода (латеральное ядро гипоталамуса) и центром насыщения (вентромедиальное ядро гипоталамуса). Электрическая стимуляция центра голода провоцирует акт еды у сытого животного, тогда как стимуляция центра насыщения прерывает прием пищи. Разрушение центра голода вызывает отказ от потребления пищи (афагия) и воды, что часто приводит к гибели животного. Электрическая стимуляция латерального ядра гипоталамуса увеличивает секрецию слюнных желез, желчи, инсулина, усиливает моторную деятельность желудка и кишечника. Повреждение центра насыщения увеличивает прием пищи (гиперфагия). Практически сразу после такой операции животное начинает есть много и часто, что приводит к гипоталамическому ожирению. При ограничении пищи масса тела уменьшается, но как только ограничения снимают, вновь проявляется гиперфагия, снижающаяся лишь при развитии ожирения. Эти животные проявляли также повышенную разборчивость, предпочитая наиболее вкусную. Ожирение, следующее за повреждением вентромедиального ядра, сопровождается анаболическими изменениями: изменяется обмен глюкозы, повышается уровень холестерина в крови, снижается уровень потребления кислорода и утилизации аминокислот. Электрическая стимуляция вентромедиального гипоталамуса уменьшает секрецию слюнных и желудочных желез, инсулина, моторику желудка и кишечника. Латеральный гипоталамус вовлечен в регуляцию метаболизма и внутренней секреции, а вентромедиальный гипоталамус оказывает на нее тормозное влияние.

В норме сахар в крови является одним из важных (но не единственным) факторов пищевого поведения. Его концентрация весьма точно отражает энергетическую потребность организма, а величина разности его содержания в артериальной и венозной крови тесно связана с ощущением голода или сытости. В латеральном ядре гипоталамуса имеются глюкорецепторы, которые тормозятся при увеличении уровня глюкозы крови. Глюкорецепторы гипоталамуса, интегрируя информацию, получаемую по нервным и гуморальным путям, участвуют в контроле приема пиши.

В контроле приема пищи участвуют различные структуры головного мозга. Афагия (отказ от пищи) и адипсия (отказ от воды) наблюдаются после повреждения бледного шара, красного ядра, покрышки среднего мозга, черной субстанции, височной доли, миндалины. Гиперфагия (обжорство) развивается после повреждения лобных долей, таламуса, центрального серого вещества среднего мозга.

Пищевые реакции, как правило, носят врожденный характер. В регуляции приема пищи важная роль принадлежит условнорефлекторным механизмам. Это является основной причиной переедания и, следовательной, приобретения лишней массы тела. В регуляции пищевого поведения участвуют многие факторы. На аппетит влияют вид, запах и вкус пищи. Степень наполнения желудка также влияет на аппетит. Низкая температура стимулирует прием пищи, высокая - тормозит. Конечный приспособительный эффект всех механизмов. Участвующих в пищевом поведении, состоит в приеме количества пищи, сбалансированного по калорийности с расходуемой энергией. Этим достигается постоянство массы тела.

ФИЗИОЛОГИЯ ДЫХАНИЯ

Дыханием можно назвать любой процесс, при котором окисление органических веществ ведет к выделению химической энергии. Когда этот процесс протекает в клетках, его называют внутренним, тканевым или клеточным дыханием. Если для него требуется кислород, то дыхание называют аэробным; если же реакции идут в отсутствии кислорода, то говорят об анаэробном дыхании.

Тканевое дыхание не следует путать с процессами поглощения кислорода из окружающей среды и выделения СО2 в среду. В совокупности эти два процесса называют внешним дыханием или газообменом. Во внешнем дыхании могут участвовать органы или структуры, снабженные специализированными поверхностями для эффективного газообмена; воздух поглощается над этими поверхностями с помощью разного рода дыхательных движений.

Между организмом и средой непрерывно должен происходить обмен газами. При аэробном дыхании для окисления пищевых веществ и получения энергии нужен поступающий из внешней среды кислород, а в среду аэробы выделяют углекислоту (СО2) - конечный продукт дыхания. Обмен между СО2 и О2 между средой и организмом называется газообменом, а поверхность на которой этот процесс фактически происходит, - дыхательная поверхность. Осуществляется газообмен путем диффузии. Млекопитающие получают кислород из воздуха.

Дыхательная система млекопитающих состоит из парных легких , расположенных в грудной полости, и ряда воздухоносных трубок, связывающих их с атмосферным воздухом. Путь воздуха включает следующие разделы: носовые ходы, глотку, гортань, трахею, бронхи, бронхиолы, легочные альвеолы. Грудная клетка защищает легкие. Сзади каждое ребро сочленяется с одним из грудных позвонков таким образом, что оно может подниматься и опускаться. Важными частями этой системы служат также межреберные мышцы, прикрепляющиеся к ребрам, и обширная диафрагма, отделяющая грудную полость от брюшной.

Воздух поступает в организм через две наружные ноздри, у каждой из которых имеется каемка волосков, задерживающих посторонние частицы. Носовые ходы выстланы ресничным эпителием, в котором имеются бокаловидные клетки, секретирующие слизь. Эта слизь выполняет две функции: она улавливает любые частички, которым удалось проскользнуть через каемку волосков, окружающую ноздри. Биение ресничек направляет затем эти частички к задней части ротовой полости, и здесь они проглатываются, так что попасть в воздухоносные пути они уже никак не могут. Во-вторых, слизь увлажняет вдыхаемый воздух ; здесь же, в носовыъ, он и нагревается благодаря неглубоко залегающим кровеносным сосудам. В крыше задней части носовой полости находится обонятельный эпителий, состоящий из нейросенсорных и поддерживающих клеток, обильно снабжаемых кровью. Здесь происходит анализ запахов. Пройдя через носовые ходы, воздух попадает в глотку через два внутренних отверстия. К этому моменту он уже обычно освобожден от имевшихся в нем частиц, согрет, увлажнен, и животное распознало принесенные им запахи.

Далее воздух, прежде чем попасть в гортань, должен пройти через глотку. Через глотку проходят и воздух, и пища, поэтому щелевидное отверстие, ведущее в гортань (голосовая щель) должно быть защищено от попадания пищи, которая могла бы закупорить дыхательные пути. Такой защитой служит имеющийся здесь треугольный клапан из хрящевой ткани - надгортанник.

Гортань- это полость перед входом в трахею, образованная девятью хрящами. Прикрепленные к ним мышцы позволяют этим хрящам двигаться относительно друг друга. В гортани горизонтально располагаются два ряда эластичных связок, называемых голосовыми связками.Когда воздух с силой проталкивается через голосовую щель, возникают звуковые волны. С изменением натяжения голосовых связок изменяется высота звука.

Из гортани воздух попадает в трахею - трубку, которая лежит непосредственно пред пищеводом и заканчивается в грудной полости. Стенки трахеи укреплены С-образными хрязщами; благодаря этим хрящам она всегда остается открытой. Своей незамкнутой стороной С-образные хрящи обращены к пищеводу; они не позволяют трахее спадаться при вдохе. Изнутри трахея выстлана псевдомногослойным ресничным цилиндрическим эпителием. В этом эпителии находятся секретирующие слзиь бокаловидные клетки. В слизи застревают попавшие в трахею пылинки и микробы, а ритмичные биения ресничек, направленные в сторону ротовой полости (ее задней части), удаляют их из трахеи.

На нижнем конце трахея разделяется на два бронха. Правый бронх в свою очередь разделяется три меньших бронха, каждый из которых направляется в одну из трех долей правого легкого. Аналогичным образом левый бронх разделяется на два бронха, заканчивающиеся в двух долях левого легкого. В обоих легких каждый бронх многократно делится на еще более мелкие трубочки -бронхиолы. Имеющиеся в бронхах С-образные хрящи в более мелких трубках замещены хрящевыми пластинками неправильной формы, а в бронхиолах, внутренний диаметр которых меньше 1 мм, хряща вовсе нет. Стенка состоит здесь только из гладкой мускулатуры, соединительной ткани с эластическими волокнами, обеспечивающими возможность растяжения и упругого сужения бронхиол, и выстилающего бронхиолы ресничного эпителия с секретирующимим слизь клетками. Самые мелкие трубочки - дыхательные бронхиолыимеют в диаметре около 0,5 мм. Они в свою очередь делятся на многочисленные альвеолярные ходы, выстланные кубическим эпителием и оканчивающиеся альвеолярными мешочками -альвеолами. Все вместе альвеолы и создают ту поверхность, на которой у млекопитающего происходит газообмен.

В легких млекопитающего могут быть сотни миллионов альвеол с обшей площадью поверхности в десятки квадратных метров. Толщина альвеолярной стенки составляет всего лишь около 0,0001 мм. Наружная сторона альвеолярной стенки покрыта густой сетью кровеносных капилляров; все они берут начало от легочной артерии и в конце концов объединяются, образуя легочную вену. Каждая альвеола выстлана влажным плоским эпителием. В альвеолярной стенке присутствуют эластические волокна, придающие ей гибкость и позволяющие альвеолам изменять свой объем при вдохе и выдохе.

Кислород, растворившийся в слое влаги на поверхности эпителия альвеол, диффундирует через тонкий барьер, состоящий из этого эпителия и из эндотелия капилляров, и поступает сначала в плазму крови. Затем он соединяется в эритроцитах с гемоглобином, который в результате этого превращается в оксигемоглобин. Углекислый газ диффундирует в обратном направлении - из крови в полость альвеол.

Диаметр альвеолярных капилляров меньше диаметра эритроцитов, и эритроциты протискиваются через эти капилляры под напором крови. При этом большая доля их поверхности приходит в контакт с поверхностью альвеол, на которой осуществляется газообмен, и в эритроциты поступает больше кислорода. Эритроциты движутся по капилляру относительно медленно, так что газообмен может происходить дольше. Когда кровь покидает альвеолы, парциальные давления кислорода и углекислоты в ней те же, что и в воздухе альвеолы.

Легкие, находящиеся в грудной клетке, отделены от ее стенок превральной полостью, которая выстлана эластичной прозрачной оболочкой - плеврой. Внутренний, висцеральный листок плевры покрывает легкие, а наружный - париетальный (пристеночный) листок выслитает стенки грудной клетки и диафрагму. Превральная полость содержит жидкость, выделяемую плеврой. Эта жидкость увлажняет плевру и тем самым уменьшает трение между двумя ее листками при дыхательных движениях. Превральная полость непроницаема для воздуха и давление в ней на 3-4 мм рт.ст. ниже, чем в легких. Это существенно, так как благодаря этому легкие заполняют практически всю грудную клетку. Отрицательное давление в превральной полости поддерживается на протяжении всего вдоха, что позволяет альвеолам расширятся и заполнять любое дополнительное пространство, возникающее при расширении грудной клетки.

Механизм вентиляции

Воздух поступает в легкие и выходит из них благодаря работе межреберных мышц и диафрагмы; в результате их попеременного сокращения и расслабления объем грудной полости изменяется. Есть две группы мышц: наружные направлены под углом вниз и вперед, а внутренние - вниз и назад. Диафрагма состоит из кольцевых и радиальных мышечных волокон, расположенных вокруг центрального сухожильного участка.

Вдох - это активный процесс. Наружные межреберные мышцы сокращаются, а внутренние расслабляются. Вследствие этого ребра отходят вперед, удаляясь от позвоночника. Одновременно сокращается, становясь более плоской, диафрагма. Оба этих действия приводят к увеличению объема грудной клетки. В результате давление в грудной клетке, а поэтому и в легких становится ниже атмосферного, так что воздух поступает внутрь и заполняет альвеолы до тех пор, пока давление в легких не сравняется с атмосферным.

Выдох - процесс в обычных условиях в основном пассивный, происходящий под действием эластического сокращения растянутой легочной ткани и расслабления части дыхательных мышц. Наружные межреберные мышцы и диафрагма расслабляются, возвращаясь в прежнее положение и к прежним своим размерам, а внутренние межреберные мышцы сокращаются. Вследствие этого объем грудной клетки уменьшается и давление в ней становится выше атмосферного. Воздух поэтому выталкивается из легких, и выдох таким образом заканчивается. При физической нагрузке имеет место форсированное дыхание. В действие вводятся дополнительные мышцы и выдох становится гораздо более активным процессом, требующим расхода энергии. Внутренние межреберные мышцы сокращаются более энергично и резко отводят ребра вниз. Сильнее сокращаются и брюшные мышцы, вызывая более активное движение диафрагмы вверх.

Регуляция содержания дыхательных газов в крови

Для дыхания клеток тела необходимо постоянное поступление в них кислорода из тканевой жидкости. С другой стороны, образующаяся в процессе дыхания углекислота на должна накапливаться в клетках или тканевой жидкости, так как это привело бы к нарушению равновесий участвующих в дыхании реакций и к местным изменениям рН, которые могли бы повлиять на скорость ферментативных процессов. Организм осуществляет тонкую регулировку концентрации (или напряжения) СО2 в крови, и она остается относительно постоянной, несмотря на колебания количества доступного кислорода и потребности в нем, которая во время интенсивной мышечной работы может увеличиваться в 20 раз.

Частота и глубина дыхания регулируются дыхательными центрами., расположенными в варолиевом мосту и продолговатом мозге (у основания головного мозга). Вентральная часть дыхательного центра ответственна за стимуляцию вдоха - центр вдоха (инспираторный центр). Дорсальная часть и обе латеральные тормозят вдох и стимулируют выдох - центр выдоха (экспираторный центр). Дыхательный центр связан с диафрагмой диафрагмальными и грудными нервами .Эти центры посылают к диафрагме и межреберным мышцам ритмические импульсы, которые вызывают дыхательные движения. В основе своей ритм дыхания является непроизвольным, но может изменяться в некоторых пределах высшими центрами головного мозга, о чем свидетельствует способность к произвольной задержке дыхания. Частота и глубина дыхания непосредственно влияют на состав альвеолярного воздуха, который в свою очередь определяет напряжение СО2 и О2 в артериальной крови, снабжающей ткани тела. Поддержание определенного значения парциальных давлений СО2 и О2 в альвеолярном воздухе и а артериальной крови обеспечивается регуляцией активности дыхательных центров с помощью отрицательной обратной связи. Эту регуляцию осуществляют импульсы, поступающие от рецепторов двух типов - механорецепторов и хеморецепторов. К первым относятся рецепторы растяжения, находящиеся в стенках трахеи и легких, вторые - хеморецпторы - имеются в стенках аорты, в каротидных тельцах (расположенных в стенках сонных артерий) и в самом продолговатом мозге. Этот механизм отрицательной обратной связи может модифицироваться высшими центрами головного мозга, что позволяет произвольно усиливать или подавлять активность дыхательных центров, например при задержке или форсировании дыхания, при издавании звуков, чихании или кашле.

Действие импульсов, поступающих от рецепторов растяжения. Связано в основном с механикой дыхательных движений. Импульсы, возникающие в дыхательных центрах, идут по эфферентным путям спинного мозга. Некоторые аксоны, образующие эти пути, выходят из спинного мозга в его шейном отделе в виде диафрагмальных нервов, направляющихся к диафрагме, тогда как аксоны других нейронов выходят из грудного отдела в составе нервов, направляющихся к наружным межреберным мышцам. Импульсы, поступающие по этим нервам, совместно вызывают вдох. Легкие наполняются воздухом, и рецепторы растяжения, находящиеся в стенках легких и трахеи, возбуждаются и активируют афферентные нейроны блуждающего нерва. Последний временно угнетает центры вдоха, и вдох прекращается. В результате расслабления диафрагмы объем грудной клетки уменьшается, эластичные легкие спадаются и воздух выталкивается из них. Поскольку рецепторы растяжения в легких и трахее больше не стимулируется, снимается угнетение с центра вдоха и дыхательный цикл повторяется. Во время интенсивной физической нагрузки повышенное напряжение СО2 в крови стимулирует центр выдоха, и импульсы от него поступают к внутренним межреберным мышцам; мышцы начинают сокращаться сильнее, и это приводит к более глубокому или частому дыханию.

Частота и глубина дыхания регулируются импульсами от хеморецепторов, возникающих в ответ на изменение напряжения О2 и СО2 в крови. В стимуляции дыхания избыток СО2 играет более важную роль, чем недостаток О2. Регулирующее влияние СО2 в крови на дыхание осуществляется почти всецело через хеморецепторы аорты, каротидных телец и самого продолговатого мозга. Хеморецепторы аорты и каротидных телец чувствительны также к изменениям концентрации О2, что имеет жизненно важное значение при низком напряжении О2, так как при этом падает активность продолговатого мозга. Усиленная вентиляция облегчает выведение углекислоты из крови путем диффузии в альвеолярный воздух, где концентрация СО2 понижается. Это происходит в случае преднамеренного глубокого дыхания -гипервентиляция.

Существует тесная взаимосвязь между дыхательными и сердечно-сосудистыми центрами продолговатого мозга. Изменение кровяного давления, регулируемого сердечно-сосудистыми центрами, влияет на дыхание: например, в случае падения кровяного давления вентиляция легких усиливается, а при повышении его она уменьшается. В свою очередь изменения концентраций дыхательных газов в крови, регистрируемыми дыхательными центрами, вызывают изменение кровяного давления.

Наши рекомендации