Теория П.К.Анохина о функциональной системе
На основе творческого развития научных идей своих предшественников И. М. Сеченова, И. П. Павлова и А. А. Ухтомского П. К. Анохин сформулировал оригинальную теорию функциональных систем, которая, по существу, явилась основой новой интегративной физиологии и медицины.
Теория функциональных систем, предложенная П. К. Анохиным, позволила с новых позиций приступить к оценке физиологических функций человека в различных условиях его жизнедеятельности и объективно оценивать эффективность реабилитационных мероприятий.
Функциональные системы, по П. К. Анохину, самоорганизующиеся и саморегулирующиеся динамические центрально-периферические организации, объединенные нервными и гуморальными регуляциями, все составные компоненты которых взаимосодействуют обеспечению различных полезных для самих функциональных систем и для организма в целом адаптивных результатов, удовлетворяющих его различные потребности.
Любая деятельность организма является приспособительной и направлена на достижение организмом полезного приспособительного результата. В основе этой приспособительной деятельности лежит формирование функциональных систем, т. е. совокупности процессов и механизмов, динамически складывающихся для достижения организмом полезного результата. Следовательно, формирование функциональных систем подчинено получению определенного, полезного приспособительного результата. Недостаточный результат может целиком реорганизовать систему, сформировать новую с более совершенным взаимодействием компонентов, обеспечивающих получение полезного результата.
Этапы (узловые механизмы) формирования функциональной системы. Концепция функциональных систем постулирует мысль о том, что среда существования оказывает на организм влияние еще до того, как подействует условный раздражитель. Следовательно, при осуществлении условного рефлекса условный раздражитель действует на фоне так называемой предпусковой интеграции, которая формируется на базе различных видов афферентных возбуждений.
Первым этапом формирования функциональной системы является афферентный синтез, который состоит из следующих компонентов (рис. 12):
1. Обстановочная афферентация — сумма афферентных возбуждений, возникающих в конкретных условиях существования организма и сигнализирующих об обстановке, в которой пребывает организм.
2. Мотивация. Обстановочная афферентация действует на организм в тот момент, когда в нем имеется тот или иной уровень мотивационного возбуждения, находящегося в состоянии скрытого доминирования. Доминирующая мотивация формируется на основе ведущей потребности, при участии мотивационных центров гипоталамуса. Из нескольких потребностей выбирается наиболее актуальная, на базе, которой возникает доминирующая мотивация. На стадии афферентного синтеза доминирующая мотивация активирует память.
Рис. 12. Схема функциональной системы поведенческого акта (по П.К.Анохину).
3. Память. Любая поведенческая реакция, в том числе и условно-рефлекторная возникает быстрее, если подобная ситуация уже встречалась в жизни, т. e. при наличии следов прошлого опыта — памяти. Значение памяти на стадии афферентного синтеза состоит в том, что она извлекает информацию, связанную с удовлетворением доминирующей мотивации.
4. Пусковая афферентация. Первые три вида возбуждений: мотивационное, память и обстановочная афферентация создают предпусковую интеграцию, на фоне которой действует четвертый вид афферентации — пусковая афферентация (пусковой стимул, условный сигнал). Эти четыре вида возбуждений взаимодействуют и обеспечивают формирование первого этапа, первого узлового механизма функциональной системы поведения — афферентного синтеза.
Основным условием формирования афферентного синтеза является одновременная встреча всех четырех видов афферентаций. Эти виды афферентаций должны обрабатываться одновременно и совместно, что достигается благодаря конвергенции всех видов возбуждений на конвергентных нейронах. Этап афферентного синтеза приводит организм к решению вопроса, какой именно результат должен петь получен в данный момент, он обеспечивает постановку цели, достижению которой будет посвящена вся дальнейшая реализация функциональной системы.
Вторым этапом функциональной системы является принятие решения (постановка цели).
Этот этап характеризуется следующими особенностями.
• Принятие решения осуществляется только на основе полного афферентного синтеза.
• Благодаря принятию решения принимается одна конкретная форма поведения, соответствующая внутренней потребности, прежнему опыту и окружающей обстановке.
• На этапе принятия решения организм освобождается от избыточных степеней свободы, т. е. из сотни возможностей после принятия решения реализуется только одна. Оставшиеся степени свободы дают возможность экономно осуществлять именно то действие, которое должно привести к запрограммированному результату.
• Этап принятия решения способствует формированию интеграла эфферентных возбуждений, в этот период все виды возбуждений приобретают эффекторный, исполнительный характер.
Третьим этапом функциональной системы является формирование программы действия.На данном этапе формируется конкретная цель действия и пути ее реализации. Одновременно с формированием программы действия формируется как бы ее копия, которая сохраняется в нервной системе, в акцепторе результатов действия.
Четвертым этапом формирования функциональной системы является формирование акцептора результатов действия. Это весьма сложный аппарат деятельности мозга, который должен сформировать тонкие нервные механизмы, позволяющие не только прогнозировать признаки (параметры) необходимого в данный момент результата, но и сравнить (сличить) их с параметрами реально полученного результата. Информация о последних приходит к акцептору результатов действия благодаря обратной афферентации. Именно этот аппарат дает возможность организму исправить ошибку поведения или довести несовершенные поведенческие акты до совершенных. Акцептор результатов действия — это идеальный образ будущих результатов действия. Именно эта модель является эталоном оценки обратных афферентации. Получены данные о том, что в этот нервный комплекс, обладающий высокой степенью мультиконвергентного взаимодействия, приходят возбуждения не только афферентной, но и эфферентной природы. Речь идет о коллатеральных ответвлениях пирамидного тракта, которые через цепь промежуточных нейронов отводят “копии” эфферентных посылок (команд), идущих к эффекторам. Эти эфферентные возбуждения конвергируют на те же промежуточные нейроны сенсомоторной области коры, куда поступают афферентные возбуждения, передающие информацию о параметрах реального результата.
Таким образом, момент принятия решения и начала выхода эфферентных возбуждений из мозга сопровождается формированием обширного комплекса возбуждений, состоящего из афферентных признаков будущего результата и из коллатеральных копий эфферентных возбуждений, поступающих по пирамидному тракту к рабочим аппаратам. К этому же комплексу возбуждений через определенное время присоединяются возбуждения от параметров реально полученного результата. Сам процесс оценки реально полученного результата осуществляется из сличения (сравнения, сопоставления) прогнозированных параметров и параметров реально полученного результата.
Если результаты не соответствуют прогнозу, то в аппарате сличения возникает реакция рассогласования, активирующая ориентировочно-исследовательскую реакцию, которая поднимает ассоциативные возможности мозга на более высокий уровень, тем самым помогает активному подбору дополнительной информации. Именно эта общая активация мозга, реализующаяся в ориентировочно-исследовательской реакции, направляет организм на поиски дополнительной информации. На ее основе формируется более полный афферентный синтез, принимается более адекватное решение, что в свою очередь приводит к формированию более адекватной программы действия и к действию, которое позволяет получить запрограммированный результат.
При достижении желаемого полезного результата в акцепторе результатов действия формируется реакция согласования. В стадию афферентного синтеза поступает санкционирующая афферентация, сигнализирующая об удовлетворении мотивации. На этом функциональная система перестает существовать.
Процессы согласования и рассогласования, возникающие при сличении параметров реально полученного результата с запрограммированным в акцепторе результатов действия, сопровождаются общими реакциями — чувством удовлетворения и неудовлетворения, т.е. положительными и отрицательными эмоциями.
Следовательно, основными этапами, узловыми механизмами функциональной системы являются:
• Афферентный синтез (обстановочная афферентация, мотивация, память, пусковая афферентация).
• Принятие решения.
• Формирование программы действия.
• Формирование акцептора результатов действия.
• Действие и его результат.
• Сличение параметров результата с их моделью в акцепторе результатов действия, осуществляемое с помощью обратной афферентации.
Синтез столь разнообразных возбуждений осуществляется на конвергентных нейронах. Именно к ним приходят обстановочная и пусковая афферентации, возбуждение от мотивационных центров. На этих же нейронах осуществляется синтез этих возбуждений со следами ранее протекавших здесь процессов (памятью). Нейроны, на которых формируются механизмы функциональной системы, расположены во всех структурах ЦНС, на всех ее уровнях. Интеграция этих процессов определяет целостную многоуровневую, многокомпонентную приспособительную деятельность организма.
Представления о типах ВНД
В основу классификации типов ВНД были положены свойства нервных процессов: сила, уравновешенность и подвижность.
Под свойствами нервных процессов понимают такие характеристики возбуждения и торможения, которые дают представление о том, в какой степени каждый из этих процессов проявляется и как они воздействуют друг на друга.
Сила нервных процессов. При измерении силы процесса возбуждения обычно пользуются графиком зависимости величины условной реакции от силы раздражителя, отражающей возрастание величины условной реакции в соответствии с усилением условного раздражителя. Условная реакция перестает увеличиваться при определенной интенсивности условного сигнала. Эта граница и характеризует силу процесса возбуждения, показывая, насколько велико его сопротивление появлению ограничивающего тормозного процесса. Показателем силы тормозного процесса является стойкость тормозных условных рефлексов, а также скорость и прочность выработки дифференцировочного и запаздывающего вида торможения.
Уравновешенность нервных процессов. При анализе уравновешенности нервных процессов производится сравнение силы процессов возбуждения и торможения. Если оба процесса являются сильными и взаимно компенсируют друг друга, то речь идет об уравновешенности этих процессов. В сложных условиях, например, при выработке дифференцировок может наблюдаться срыв тормозного процесса, если он оказывается слабым. В этом случае дифференцировка нарушается. Если же доминирует тормозной процесс в силу недостаточности, слабости возбуждения, то в трудных условиях дифференцировка сохраняется, но резко уменьшается величина реакции на положительный условный сигнал.
Подвижность нервных процессов.О подвижности нервных процессов можно судить по скорости переделки положительных условных рефлексов в тормозные и обратно. Чаще для определения подвижности нервных процессов применяется переделка динамического стереотипа. В тех случаях, когда переход от положительной реакции к тормозной и от тормозной к положительной осуществляется быстро, когда одна реакция фактически не изменяет протекание другой, можно говорить о высокой подвижности нервных процессов.
По критерию силы нервных процессов выделяют сильный и слабый типы. У слабого типа процессы возбуждения и торможения слабые. Подвижность и уравновешенность нервных процессов не могут быть охарактеризованы достаточно точно.
Сильный тип нервной системы подразделяется на уравновешенный и неуравновешенный. Выделяется группа, которая характеризуется неуравновешенными процессами возбуждения и торможения с преобладанием возбуждения над торможением (“безудержный тип”), когда основным свойством является неуравновешенность. Для уравновешенного типа, у которого процессы возбуждения и торможения сбалансированы, приобретает значение быстрота смены процессов возбуждения и торможения. В зависимости от этого показателя выделяют подвижный и инертный типы ВНД.
Эта классификация типов ВНД легко сопоставляется с широко принятой в психологии классификацией темпераментов по Гиппократу: холерик, сангвиник, флегматик, меланхолик.
Итак, эксперименты, проведенные в лабораториях И.П.Павлова, позволили создать следующую классификацию типов ВНД:
• Сильный, неуравновешенный с преобладанием процессов возбуждения (холерик).
• Сильный, уравновешенный, подвижный (сангвиник).
• Сильный, уравновешенный, инертный (флегматик).
• Слабый (меланхолик).
Эти типы ВНД являются общими для животных и человека. Часто встречаются промежуточные типы со стертыми границами. Можно выделить особые, присущие только человеку типологические черты. По мнению И.П.Павлова, в их основе лежит степень развития первой и второй сигнальных систем. Первая сигнальная система - это зрительные, слуховые и другие чувственные сигналы, из которых строятся образы внешнего мира. У человека в процессе трудовой деятельности и социальной жизни развивается вторая сигнальная система - словесная, в которой слово в качестве условного раздражителя, знака, не имеющего реального физического содержания, но являющегося символом предметов и явлений материального мира, становится сильным стимулом. Эта система сигнализации состоит в восприятии слов - слышимых, произносимых (вслух или про себя) и видимых (при чтении и письме). С помощью слова осуществляется переход от чувственного образа первой сигнальной системы к понятию, представлению второй сигнальной системы. Способность оперировать абстрактными понятиями, выражаемыми словами служив основой мыслительной деятельности.
Учитывая динамические отношения первой и второй сигнальной систем, И. П. Павлов выделил специфические человеческие типы ВНД в зависимости от преобладания первой или второй сигнальных систем в восприятии действительности. В этом случае в качестве основного показателя учитывается сила нервных процессов в той корковой системе, где фиксируются следы в виде кинестетических, акустических или оптических символических обозначений, аккумулирующих следы непосредственных воздействий на человека. Людей с преобладанием функций корковых проекций, ответственных за первосигнальные раздражители, И. П. Павлов относил к художественному типу (у представителей этого типа преобладает образный тип мышления). Если же более сильной в динамическом отношении оказывается вторая сигнальная система, подавляющая первую, то таких людей относят к мыслительному типу (у представителей этого типа преобладает логический тип мышления). В тех случаях, когда сигналы первой и второй сигнальных системы создают нервные процессы одинаковой силы, ни первая, ни вторая сигнальные системы не оказывают доминирующего влияния на поведение человека. Такие люди относятся к среднему или смешанному типу. Такое разделение на типы ВНД не означает, что великие мыслители и художники являлись типичными представителями этих типов, и те, и другие в зависимости от характера восприятия действительности могут быть отнесены к любому из этих типов.
6. ФИЗИОЛОГИЯ КРОВИ