Приобретенный и врожденный токсоплазмоз

Восприимчивость человека к токсоплазмозу чрезвычайно высокaя.

Болезнь у людей может протекать в виде практически бессимптомного состояния, до клинически выраженной с летальным исходом. Примерно у 1 % токсоплазмозных людей отмечаются слабовыраженные признаки болезни - общая слабость, снижение аппетита, памяти, боли в области сердца. У 0,2-0,5°/о людей хроническая форма болезни переходит в остры й токсоплазмоз.

При трансплацентарном заражении в первые месяцы беременности возможна гибель плода. Внутриутробное заражение в поздние сроки беременности сопровождается рaзвитием острой формы токсоплазмоза - значительными нарушениями в нервной, сердечнососудистой сисreмах, органах зрения и пр.

Диагностика

Для прижизненной диагностики токсоплазмоза человека применяют как иммунологические методы, так и парaзитарные -обнаружение парaзитов при микроскопировании мaзков крови, пунктата спинномозговой жидкости, биоптата лимфатических узлов, ткани плаценты.

Профилактика

Профилактикатоксоплaзмоза должна быть направлена на оздоровление синантропных очагов путем уничтожения беспризорных кошек, ветеринарного надзора над домашними кошками. Нельзя кормить кошек сырым мясом, сырыми яйцами, некипяченым молоком. Следует ежедневно дезинфицировать ящик c песком для кошки.

Личнaя профилактика предполагает тщательное мытье рук после контакта с сырым мясом, с землей, с шерстью кошек, собак. Необходимо проточной водой мыть огородную зелень, ягоды, овощи. Нельзя дегустировать сырой мясной фарш, пить сырое молоко. В заключение, следуeт отметить, что другого такого паразита в природе нет, потому что для него характерны всe известные пути заражения и локализация паразита во всех тканях и органах человека.

4). Задача. Проведенное лабораторное исследование мазка крови больного

показало наличие в эритроцитах шизонтов лентовидной формы. В стадии

меруляции насчитывается от 6 до 12 мерозоитов, расположенных в виде

розетки. Пораженные эритроциты в объеме не увеличены. Какой вид плазмодия

вызвал малярию?

Четырехдневная малярия развивается при паразитировакии Рl. malariae. Уже c первых приступов устанавливается четкая периодичность их. через два дня на третий, обычно в полдень. Приступы могут продолжаться в течение б часов, затем температура резко снижается и в межприступный период состояние больных удовлетворительное. После 8-14 приступов клинические проявления могут самостоятельно прекратиться, хотя процесс эритроцитарной шизогонии на очень низком уровне может продолжаться в течении всей жизни больного. Диагностические признаки PI. malariae следующие:
- пораженный эритроцит в объеме не увеличивается;
- характерно только единичное поражение эритроцита (одно кольцо);
- растущий шизонт (трофозоит) лентовидной формы;
- пигмент рассеян по всей цитоплазме паразита в виде крупных зерен;
- при меруляции образуются от б до 12 мерозоитов, расположенных в виде правильной розетки вокруг кучки золотисто-желтого пигмента. Профилактика малярии связана, прежде всего, c повсеместным существованием комаров рода Anopheles. Особую опасность приобретает завоз .малярии лицами, приезжающими из тропических стран Азии, Африки, Латинской Америки. От местных органов здравоохранения требуется постоянный Контроль за выявлением больных Н паразитоносителей среди приезжих иностранцев. Обследованию также подлежат лица, приехавшие из южных районов (Закавказье, Средняя Азия ) во всех случаях повышенной температуры c невыясненной причиной. Следует помнить, что заражение малярией может произойти при переливании крови или при гемотерапии (например, при переливании крови матери ребенку внутримышечно). Известны случаи, когда кровь, взятая от лиц перенесших малярию много лет назад, вызывала заболевание y реципиентов. C целью предупреждения подобных случаев должен осуществляться тщательным отбор доноров.

Билет 19

1). Хромосомный уровень организации наследственного материала. Химический состав и структура хроматина. Виды хроматина. Конститутивный и факультативный гетерохроматин.

В соответствии с хромосомной теорией наследственный материал, представленный в виде отдельных генов, организован в хромосомы. Благодаря наличию хромосом достигается объединение генов в комплексы — группы сцепления, количество которых во много раз меньше числа генов. Это позволяет точно распределять наследственный материал между клетками или передавать его от организма к организму, а также создает условия для появления новых комбинаций групп сцепления (анафаза I мейоза) или участков гомологичных хромосом (кроссинговер в профазе I мейоза) в гаметах. Таким образом, наличие хромосомной организации наследственного материала обеспечивает закономерности его распределения в потомстве и разнообразие организмов данного вида по их генетической структуре.
Хроматин - основной компонент клеточного ядра - достаточно легко получить из выделенных интерфазных ядер и из выделенных митотических хромосом. Для этого используют его свойство переходить в растворенное состояние при экстракции водными растворами с низкой ионной силой или просто деионизованной водой. При этом участки хроматина набухают и переходят в гель. Чтобы такие препараты перевести в настоящие растворы, необходимы сильные механические воздействия: встряхивание, перемешивание, дополнительная гомогенизация. Это, конечно, приводит к частичному разрушению исходной структуры хроматина, дробит его на мелкие фрагменты, но практически не меняет его химического состава.

Фракции хроматина, полученные из разных объектов, обладают довольно однообразным набором компонентов. Было найдено, что суммарный химический состав хроматина из интерфазных ядер и митотических хромосом мало отличаются друг от друга. Главными компонентами хроматина являются ДНК и белки, среди которых основную массу составляют гистоны и негистоновые белки (см табл. 3).

В среднем в хроматине около 40% приходится на ДНК и около 60 % на белки, среди которых специфические ядерные белки-гистоны, составляют от 40 до 80% от всех белков, входящих в состав выделенного хроматина. Кроме того в состав хроматиновой фракциии входят мембранные компоненты, РНК, углеводы, липиды, гликопротеиды. Вопрос о том, насколько эти минорные компоненты входят в структуру хроматина еще не решен. Так, например, РНК может представлять собой транскрибируемую РНК, которая еще не потеряла связь с матрицей ДНК. Другие же минорные компоненты могут представлять собой вещества соосажденных фрагментов ядерной оболочки.

В структурном отношении хроматин представляет собой нитчатые комплексные молекулы дезоксирибонуклеопротеида (ДНП), которые состоят из ДНК, ассоциированной с гистонами. Поэтому укоренилось другое название хроматина - нуклеогистон. Именно за счет ассоциации гистонов с ДНК образуются очень лабильные, изменчивые нуклеиново-гистоновые комплексы, где отношения ДНК : гистон равно примерно единице, т.е. они присутствуют в равных весовых количествах. Эти нитчатые фибриллы ДНП и есть элементарные хромосомные или хроматиновые нити, толщина которых в зависимости от степени упаковки ДНК может колебаться от 10 до 30 нм. Эти фибриллы ДНП могут в свою очередь дополнительно компактизоваться с образованием более высоких уровней структуризации ДНП, вплоть до митотической хромосомы. Роль некоторых негистоновых белков заключается именно в образовании высоких уровней компактизации хроматина.

Различают два вида хроматина - Эухроматин и гетерохроматин.

Эухроматин. Соответствует сегментам хромосом, которые Деспира-лизованы и открыты для транскрипции. Эти сегменты Не окрашива­ются И не видны в световой микроскоп.

Гетерохроматин. Соответствует Конденсированным, Плотно скру­ченным сегментам хромосом (что делает их Недоступными для транс­крипции). Он Интенсивно окрашивается Основными красителями, и в световом микроскопе имеет вид гранул.

Таким образом, По морфологическим признакам ядра (соотноше­нию содержания эу - и гетерохроматина) можно оценить активность процессов транскрипции, а, следовательно, синтетической функции клетки. При ее повышении это соотношение изменяется в пользу эухроматина, при снижении - нарастает содержание гетерохроматина. При полном подавлении функции ядра (например, в поврежденных и гибну­щих клетках, при ороговении эпителиальных клеток эпидермиса - кера-тиноцитов, при образовании ретикулоцитов крови) оно уменьшается в размерах, содержит только гетерохроматин и окрашивается основны­ми красителями интенсивно и равномерно. Такое явление называется Кариопикнозом (от греч. karyon - ядро и pyknosis - уплотнение).

Распределение гетерохроматина (топография его частиц в яд­ре) и соотношение содержания эу - и гетерохроматина Характерны для клеток каждого типа, что позволяет осуществлять их идентификацию как визуально, так и с помощью автоматических анализаторов изобра­жения. Вместе с тем, имеются определенные общие закономерности распределения гетерохроматина В ядре: его скопления располагают­ся Под кариолеммой, прерываясь в области пор (что обусловлено его связью с ламиной) и вокруг ядрышка (Перинуклеолярный гетерохроматин), более мелкие глыбки разбросаны по всему ядру .

Тельце Барра - Скопление гетерохроматина, соответствующее од­ной Х-хромосоме у особей женского пола, которая в интерфазе плотно скручена и неактивна. В большинстве клеток оно лежит у кариолеммы, а в гранулоцитах крови имеет вид маленькой добавочной дольки ядра ("барабанной палочки"). Выявление тельца Барра (обычно в эпителиальных клетках слизистой оболочки полости рта) используется как ди­агностический тест для определения генетического пола (обязателен, в частности, для женщин, участвующих в Олимпийских Играх).

Упаковка хроматина в ядре. В дсконденсированном состоянии длина одной молекулы (двойной спирали) ДНК, образующей каждую хромосому, равна в среднем, около 5 см, а общая длина молекул ДНК всех хромосом в ядре (диаметром около 10 мкм) составляет более 2 м (что сравнимо с укладкой нити длиной 20 км в теннисный мячик диа­метром около 10 см), а в S-период интерфазы - более 4 м. Конкретные механизмы, препятствующие спутыванию этих нитей во время транс­крипции и репликации, остаются нераскрытыми, однако очевидна необ­ходимость Компактной упаковки молекул ДНК, В клеточном ядре это осуществляется благодаря их связи со специальными основными (гистоновыми) белками. Компактная упаковка ДНК в ядре обеспечивает:

(1) Упорядоченное расположение Очень длинных молекул ДНК в небольшом объеме ядра;

(2) функциональный Контроль активности генов (вследствие вли­яния характера упаковки на активность отдельных участков генома.

Уровни упаковки хроматина . Начальный уровень упа­ковки хроматина, обеспечивающий образование Нуклеосомной нити Ди­аметром 11 нм, обусловлен намоткой двойной нити ДНК (диаметром 2 нм) на блоки дисковидной формы из 8 гистоновых молекул (нуклеосомы).Нуклеосомы разделены короткими участками свободной ДНК. Второй уровень упаковки также обусловлен гистонами и приводит к скручиванию нуклеосомной нити с формированием Хроматиновой фибриллы Диаметром 30 нм. В интерфазе хромосомы образованы хроматиновыми фибриллами, причем каждая хроматида состоит из одной фибриллы. При дальнейшей упаковке хроматиновые фибриллы образу­ют Петли (петельные домены) Диаметром 300 нм, каждый из которых соответствует одному или нескольким генам, а те, в свою очередь, в результате еще более компактной укладки, формируют участки конденси­рованных хромосом, которые выявляются лишь при делении клеток.

В хроматине ДНК связана помимо гастонов также и с Негистоновыми белками, Которые Регулируют активность генов. Вместе с тем, и гистоны, ограничивая доступность ДНК для других ДНК-связьвзающих белков, могут участвовать в регулядии активности генов.

Функция хранения генетической информации В ядре в неизме­ненном виде имеет исключительно важное значение для нормальной жизнедеятельности клетки и всего организма. Подсчитано, что при ре­пликации ДНК и в результате ее повреждений внешними факторами в каждой клетке человека ежегодно происходят изменения 6 нуклеотидов. Возникшие повреждения молекул ДНК могут исправляться в ре­зультате процесса Репарации Или путем Замещения После Распознава­ния и маркировки соответствующего участка.

В случае невозможности репарации ДНК при слишком значитель­ных повреждениях включается механизм запрограммированной гибели клетки . В этой ситуации "поведение" клетки можно оценить как своего рода "альтруистическое самоубийство": ценой своей гибели она спасает организм от возможных негативных последствий реплика­ции и амплификации поврежденного генетического материала.

Способность к репарации ДНК у Взрослого человека снижается примерно на 1% с каждым годом. Это снижение может отчасти объяс­нить, почему старение является фактором риска развития злокачест­венных заболеваний. Нарушения процессов репарации ДНКХарактерно для ряда наследственных болезней, при которых резко Повышены Как Чувствительность к повреждающим факторам, Так и Частота разви­тия злокачественных новообразований.

Функция Реализации генетической информации В интерфазном ядре осуществляется непрерывно благодаря процессамТранскрипции. Геном млекопитающих содержит около ЗхЮ9 нуклеотидов, однако не более 1% его объема кодирует важные белки и принимает участие в ре­гуляции их синтеза. Функции основной некодирующей части генома не­известны.

При транскрипции ДНК образуется очень крупная молекула РНК (первичный транскрипт), которая связывается с ядерными белками с образованием Рибонуклеопротеинов (РНП). В первичном РНК-транс­крипте (как и в матричной ДНК) имеются дискретные значащие после­довательности нуклеотидов (экзоны), Разделенные длинными некодирующими вставками (нитронами). Процессинг РНК-транскрипта включает отщепление нитронов и стыковку экзонов - сплайсинг (от англ, splicing - сращивание). При этом очень крупная молекула РНК превращается в достаточно мелкие молекулы иРНК, отделяющиеся от связанных с ни­ми белков при переносе в цитоплазму.

2).Профилактика наследственных заболеваний. Медико-генетическое консультирование, его медицинское значение. Этапы консультирования.

По данным Всемирной организации здравоохранения, около 2,5% новорожденных появляются на свет с различными пороками развития. При этом 1,5-2% из них обусловлены преимущественно неблагоприятными экзогенными факторами (так называемыми тератогенами), а остальные имеют преимущественно генетическую природу. Среди экзогенных причин пороков развития следует упомянуть биологические (инфекционные заболевания: краснуха, герпес, токсоплазмоз, хламидийная инфекция, цитомегаловирусная инфекция), физические (все виды ионизирующего излучения, радионуклиды), химические (все противоопухолевые препараты, гормональные препараты, наркотические вещества).

Генетические факторы пороков развития отражают так называемый общий генетический груз популяции, который проявляется более чем у 5% населения планеты. Примерно 1% генетического груза приходится на генные мутации, 0,5% - на хромосомные мутации, около 3-3,5% соответствует болезням с выраженным наследственным компонентом (диабет, атеросклероз, ишемическая болезнь сердца, некоторые опухоли и.т.д.). Если к этому добавить, что около 40-50% ранней младенческой (перинатальной) смертности и инвалидности с детства обусловлены наследственными факторами и примерно 30% коек в детских стационарах заняты детьми с наследственной патологией, становится понятной безусловная необходимость правильной и рационально организованной ранней диагностики врожденных и наследственных болезней. Решающая роль в этом принадлежит институтам медико-генетической службы, и в первую очередь тем ее подразделениям, которые обеспечивают пренатальную диагностику, позволяющую не только установить диагноз еще до рождения, но и предотвратить появление на свет детей с тяжелыми, нерепарируемыми пороками развития, с социально значимыми смертельными генными и хромосомными болезнями.

Медико-генетическая помощь в России, так же как и в бывшем СССР, организована по территориальному принципу и включает как обязательное начальное звено медико-генетические консультации и кабинеты, межобластные (межрегиональные) медико-генетические центры и как высшее звено - федеральные медико-генетических центры. Непосредственно пренатальная диагностика сосредоточена почти исключительно в областных, межрегиональных и федеральных медико-генетических центрах.

Медико-генетическое консультирование и пренатальная диагностика позволяют снизить риск рождения ребенка с наследственным заболеванием, а следовательно снизить общий груз патологической наследственности.

Профилактика - составная часть медицины. Социально-профилактическое направление в деле охраны и укрепления здоровья народа включает в себя медицинские, санитарно-технические, гигиенические и социально-экономические мероприятия. Создание системы предупреждения заболеваний и устранения факторов риска является важнейшей социально-экономической и медицинской задачей государства. Выделяют индивидуальную и общественную профилактику. В зависимости от состояния здоровья, наличия факторов риска заболевания или выраженной патологии у человека рассматривают 3 вида профилактики.

Первичная профилактика - это система мер предупреждения возникновения и воздействия факторов риска развития заболеваний (вакцинация, рациональный режим труда и отдыха, рациональное качественное питание, физическая активность, оздоровление окружающей среды и др.).

К первичной профилактике относят социально-экономические мероприятия государства по оздоровлению образа жизни, окружающей среды, воспитанию и др. Профилактическая деятельность обязательна для всех медицинских работников. Не случайно поликлиники, больницы, диспансеры, родильные дома называются лечебно-профилактическими учреждениями.

Вторичная профилактика - это комплекс мероприятий по устранению выраженных факторов риска, которые при определенных условиях (снижение иммунного статуса, перенапряжение, адаптационный срыв) могут привести к возникновению, обострению или рецидиву заболевания. Наиболее эффективным методом вторичной профилактики является диспансеризация как комплексный метод раннего выявления заболеваний, динамического наблюдения, направленного лечения, рационального последовательного оздоровления.

Ряд специалистов предлагают термин <третичная профилактика> как комплекс мероприятий по реабилитации больных, утративших возможность полноценной жизнедеятельности. Третичная профилактика имеет целью социальную (формирование уверенности в собственной социальной пригодности), трудовую (возможность восстановления трудовых навыков), психологическую (восстановление поведенческой активности личности) и медицинскую (восстановление функций органов и систем) реабилитацию.

Наследственные болезни можно и нужно предупреждать, соблюдая интересы конкретных людей и их семей, основывая все мероприятия на праве выбора в вопросах планирования семьи и деторождения. Профилактика наследственных болезней может и должна быть эффективной, учитывающей интересы общества в целом и каждой семьи.

Вот почему наиболее эффективным и гуманным видом предупреждения наследственных болезней стало семейное медико-генетическое консультирование, столь распространенное уже во многих странах.

Кому необходима генетическая консультация? Прежде всего будущим родителям, у которых есть родственники с наследственными заболеваниями. Нужна она и родителям, имеющим ребенка с врожденным дефектом. Если возникает подозрение относительно возможности рождения больного ребенка, то у лечащего врача любой специальности следует получить направление на медико-генетическую консультацию. Можно обратиться за генетической консультацией и самостоятельно, но это менее эффективно, так как требуется дополнительное время на уточнение медицинских данных. Медицинские показания для направления в генетическую консультацию:
  • Установленный или предполагаемый диагноз определенного наследственного заболевания у кого-либо из членов семьи или их родственников.
  • Сходные заболевания у нескольких родственников.
  • Отставание ребенка в умственном, речевом и физическом развитии без определенной причины.
  • Врожденные пороки развития и диспластичная внешность ребенка.
  • Непереносимость отдельных видов пищевых продуктов.
  • Нарушения развития опорно-двигательного аппарата (карликовость, искривления и повторные переломы костей и т. д.).
  • Мышечные дистрофии, двигательная расторможенность, нарушения походки.
  • Неправильное формирование половых органов.
  • Резко выраженные аномалии кожи и ее производных: волос, зубов, ногтей.
  • Необычный запах мочи ребенка.
  • Длительное бесплодие супругов (если исключены ненаследственные причины).
  • Повторные выкидыши, мертворождения неясного происхождения.
  • Вредные воздействия на любого из супругов до зачатия и на женщину во время беременности.
  • Семейные формы аллергозов.
  • Хронические заболевания с прогрессирующим течением, начинающиеся в детском, юношеском и молодом возрасте (язвенная болезнь, психические болезни, сахарный диабет, гипертония и атеросклероз).
  • Врожденная слепота, глухота.
  • Возраст беременной женщины старше 37 лет.
  • Кровное родство супругов.
Разумеется, этот список не исчерпывает всех возможных ситуаций, и для уточнения конкретных показаний целесообразно посоветоваться с лечащим врачом.
Как ведется медико-генетическое консультирование? Медико-генетическое консультирование определяют как особый вид медицинской помощи, направленный на предупреждение наследственных болезней в отдельных конкретных семьях, активно заинтересованных в этом. В каждой конкретной семье решается ее индивидуальная проблема, то есть речь идет не об абстрактной профилактике всех болезней вообще, а о предупреждении определенного заболевания. Семейная профилактика наследственных болезней основывается на возможности прогнозировать рождение больного ребенка. В одних случаях используется точное знание генетической природы и типа наследования заболевания, в других - статистические данные о частоте случаев заболевания среди населения и родственников в отягощенных семьях. Суть генетического прогноза заключается в вычислении вероятности или риска рождения больного ребенка в каждой конкретной ситуации. В медико-генетическом консультировании можно выделить три основных этапа.
  1. Вначале уточняется диагноз заболевания, по поводу которого консультируется семья. С этой целью тщательно анализируются исходные сведения о больном, при необходимости проводятся дополнительные обследования не только самого больного, но и его родственников, включая исследования хромосом, специальные биохимические и другие анализы. Важно знать каждому, что результаты всех обследований интерпретируются с помощью детального анализа его родословной.
Как выявляют носителей генетических заболеваний среди здоровых людей?
Скрытое носительство патологических генов - явление настолько распространенное, что практически каждый здоровый человек имеет 1-2 генетических дефекта. Поэтому более уместно говорить не о проблеме носительства вообще, а о носителях конкретных генов и отягощенных семьях, то есть о родственниках больных, имеющих повышенный риск унаследования и передачи своим детям наследственных заболеваний. В значительной части случаев носительство устанавливается при анализе родословной на основе генетических доказательств. Например, при рецессивных заболеваниях носителями являются как оба родителя, так и все дети больных. При заболеваниях же, сцепленных с полом, носительницами являются все дочери больных мужчин и матери больных сыновей, имеющие также больных родственников по линии своей матери. Однако не во всех случаях носительство можно выявить и доказать только таким образом. Многие родственники больных, не относящиеся к перечисленным категориям, теоретически могут быть, а могут и не быть носителями, и на основании простого анализа родословной их генотип нельзя определить однозначно. В таких случаях использование различных лабораторных методов позволяет достоверно осуществить диагностику носительства хромосомных перестроек и генных мутаций. В настоящее время разработаны и продолжают разрабатываться диагностические пробы для определения носительства значительного числа наследственных заболеваний. Например, несложные анализы крови, помогают выявить носительство ряда тяжелых, наследственных заболеваний крови, а определение активности ферментов в клетках крови или кожи, а иногда волосяных луковиц, позволяет диагностировать наследственные дефекты обмена веществ.
  1. После уточнения диагноза проводится расчет риска рождения больного ребенка в семье или вероятности заболевания в более позднем возрасте для уже родившихся. Расчет риска не всегда бывает простым, и от врача-генетика требуется хорошее знание математической статистики, теории вероятностей. В некоторых случаях используются специальные компьютерные программы.
  2. И наконец, на заключительном этапе, пожалуй, наиболее сложном не только для врача, но и для пациентов, дается объяснение прогноза.
Врач-консультант помогает семье в принятии решения о планировании ее будущего. Он дает информацию о природе заболевания и величине повторного риска для родственников больного, рекомендует возможные дополнительные меры профилактики (по индивидуальным показаниям), например, дородовую диагностику, устранение профессиональных или бытовых вредностей, диспансерное наблюдение при повышенной наследственной предрасположенности к болезням, проявляющимся в более позднем возрасте и т. п. Врач-консультант может посоветовать и воздержаться от дальнейшего деторождения (к счастью, необходимость в таких рекомендациях возникает очень редко). Подобные рекомендации врача-генетика не носят директивного характера, и право окончательного решения всегда предоставляется самим консультирующимся.

Наши рекомендации