Строение и функции зрительного анализатора
Строение глаза. Периферическим отделом зрительного анализатора является глаз, который расположен в углублении черепа - глазнице. Сзади и с боков он защищен от внешних воздействий костными стенками глазницы, а спереди - веками. Он состоит из глазного яблока и вспомогательных структур: слезных желез, ресничной мышцы, кровеносных сосудов и нервов. Слезная железа выделяет жидкость, предохраняющую глаз от высыхания. Равномерному распределению слезной жидкости по поверхности глаза
способствует мигание век. Глазное яблоко у маленьких детей имеет диаметр до 16 мм.
Рост глазного яблока продолжается после рождения. Интенсивнее всего оно растет первые пять лет жизни, менее интенсивно - до 9-12 лет. У взрослых диаметр глазного яблока составляет около 24 мм.
Глазное яблоко состоит из трех оболочек - наружной, средней и внутренней (рис. 8). Наружная оболочка глаза - склера, или белочная оболочка. Это плотная непрозрачная ткань белого цвета, толщиной около 1 мм, в передней части она переходит в прозрачную роговицу. У новорожденных детей роговица более толстая и выпуклая, к пяти годам ее толщина уменьшается, а радиус кривизны с возрастом почти не меняется. Вместе с тем с возрастом роговица становится более плотной и ее преломляющая сила уменьшается, повышенная растяжимость и эластичность склеры способствует легкой деформации глазного яблока, что важно в формировании рефракции глаза.
Под склерой расположена сосудистая оболочка глаза, толщина которой 0,2-0,4 мм. В ней содержится большое количество кровеносных сосудов. В переднем отделе глазного яблока сосудистая оболочка переходит в ресничное (цилиарное) тело и радужную оболочку (радужку). Вместе эти структуры составляют среднюю оболочку глаза.
В ресничном теле расположена мышца, связанная с хрусталиком и регулирующая его кривизну. Хрусталик - прозрачное, эластичное образование, имеет форму двояковыпуклой линзы. Он покрыт прозрачной сумкой, по всему его краю к ресничному телу тянутся тонкие, но очень упругие волокна. Они сильно натянуты и держат хрусталик в растянутом состоянии. У новорожденных и детей дошкольного возраста хрусталик более выпуклый и более эластичный.
В центре радужки располагается круглое отверстие - зрачок, его диаметр изменяется, отчего в глаз может попадать большее или меньшее количество света. Просвет зрачка регулируется мышцей, находящейся в радужке. У новорожденных зрачок узкий. В возрасте 6-8 лет зрачки широкие из-за преобладания тонуса симпатических нервов, иннервирующих мышцы радужной оболочки. В 8-10 лет зрачок вновь становится узким и очень живо реагирует на свет, а к 12-13 годам быстрота и интенсивность реакции на свет такие же, как у взрослого.
Рис 8. Орган зрения: 1- белочная оболочка; 2 - роговица; 3 – хрусталик; 4 – ресничная мышца; 5 – радужная оболочка; 6 – сосудистая оболочка; 7 – сетчатка; 8 – слепое пятно; 9 – стекловидное тело; 10 – задняя камера глаза; 11 – передняя камера глаза; 12 – зрительный нерв.
В радужной оболочке содержится особое красящее вещество — меланин. От количества этого пигмента цвет радужки может колебаться от серого и голубого до коричневого, почти черного. Цветом радужки определяется цвет глаз. Если пигмент отсутствует (таких людей называют альбиносами), лучи света могут проникать в глаз не только через зрачок, но и через ткань радужки. У альбиносов глаза имеют красноватый оттенок, зрение понижено.
В передней и задней камере глаза находится прозрачная жидкость, или водяниста влага, которая снабжает питательными веществами роговицу и хрусталик. Полость позади хрусталика заполнена прозрачной желеобразной массой — стекловидным телом.
Внутренняя поверхность глаза выстлана тонкой {0,2-0,3 мм), весьма сложной по строению оболочкой - сетчаткой, или ретиной, на которой находятся светочувствительные клетки, названные, из-за их формы, - колбочки и палочки, или рецепторы. Колбочки сосредоточены в основном в центральной области сетчатки - в желтом пятне. По мере удаления от центра число колбочек уменьшается, а палочек - возрастает. На периферии сетчатки имеются только палочки. От рецепторов отходят нервные волоконца, которые собираются вместе и образуют зрительный нерв, идущий к головному мозгу. У новорожденных детей палочки в сетчатке сформированы, число колбочек в желтом пятне начинает возрастать после рождения, и к концу первого полугодия морфологическое развитие центральной части сетчатки заканчивается. У взрослого человека насчитывается 6-7 млн. колбочек и 110-125 млн. палочек, которые обеспечивают восприятие дневного и сумеречного света.
Оптическая система глаза. Поступающие в глаз световые лучи, прежде чем они попадут на сетчатку, проходят через несколько преломляющих сред. К ним относятся роговица, водянистое вещество передней и задней камер глаза, хрусталик и стекловидное тело. Каждая из этих сред имеет свой показатель преломляющей силы. Преломляющая сила выражается в диоптриях (Д). Одна диоптрия — это преломляющая сила линзы с фокусным расстоянием 1 м. Преломляющая сила глаза в целом равна 59 Д при рассматривании далеких предметов и 70,5 Д при рассматривании близких предметов.
Глаз — чрезвычайно сложная оптическая система, и для упрощения была предложена такая модель глаза, в которой одна выпуклая поверхность дает суммарный эффект преломления лучей во всей сложной оптической системе глаза. Пользуясь этой моделью, можно построить изображение видимого предмета на сетчатке. Для этого нужно провести линии от конца рассматриваемого предмета к узловой точке и продолжить их до пересечения с сетчаткой. Изображение на сетчатке получается действительным, уменьшенным и обратным.
Ребенок в первые месяцы после рождения путает верх и низ предмета. Если такому ребенку показать горящую свечу, то он, стараясь схватить пламя, протянет руку не к верхнему, а к нижнему концу свечи. То обстоятельство, что мы видим предметы не в их перевернутом изображении, а в их естественном виде, объясняется жизненным опытом и взаимодействием анализаторов.
Аккомодация. Чтобы рассматриваемый предмет был ясно виден, надо, чтобы лучи от всех его точек попали на заднюю поверхность сетчатки, т. е. были здесь сфокусированы.
Когда, человек смотрит вдаль, предметы, расположенные на близком расстоянии, кажутся расплывчатыми, они не в фокусе. Если глаз фиксирует близкие предметы, неясно видны отдаленные.
Попробуйте одновременно одинаково ясно увидеть шрифт книги через марлевую сетку и саму марлевую сетку. Это вам не удастся, так как предметы расположены от глаза на разном расстоянии.
Глаз способен приспосабливаться к четкому видению предметов, находящихся от него на различных расстояниях. Эту способность глаза называют аккомодацией. Аккомодация осуществляется путем изменения кривизны хрусталика. При рассматривании близких предметов хрусталик делается более выпуклым, благодаря чему лучи от предметов сходятся на сетчатке.
Хрусталик посредством цинковой связки соединен с мышцей, располагающейся широким кольцом позади корня радужной оболочки. Благодаря деятельности этой мышцы хрусталик может менять свою форму, становиться более или менее выпуклым и соответственно сильнее или слабее преломлять попадающие в глаз лучи света.
При рассматривании предметов, находящихся на далеком расстоянии, ресничная мышца расслаблена, а связки, прикрепленные преимущественно к передней и задней поверхности капсулы хрусталика, в это время натянуты, что вызывает сдавливание хрусталика спереди назад и его растягивание. Поэтому при смотрении вдаль кривизна хрусталика и, следовательно, преломляющая сила его становятся наименьшими.
При приближении предмета к глазу происходит сокращение ресничной мышцы, связка расслабляется. Это прекращает сдавливание и растягивание хрусталика. Вследствие эластичности хрусталик становится более выпуклым и его преломляющая сила увеличивается.
При смотрении вдаль радиус кривизны передней поверхности хрусталика 10 мм, а при наибольшем напряжении аккомодации, т. е. при четком видении максимально приближенного к глазу предмета, радиус кривизны хрусталика составляет 5,3 мм.
Аккомодация глаза начинается уже тогда, когда предмет находится на расстоянии около 65 м от глаза. Отчетливо выраженное сокращение ресничной мышцы начинается на расстоянии предмета от глаза 10 и даже 5 м. Если предмет продолжает приближаться к глазу, аккомодация все более усиливается и, наконец, отчетливое видение предмета становится невозможным. Наименьшее расстояние от глаза, на котором предмет еще отчетливо виден, называется ближайшей точкой ясного видения. У нормального глаза дальняя точка ясного видения лежит в бесконечности.
С возрастом аккомодация изменяется. В 10 лет ближайшая точка ясного видения находится на расстоянии менее 7 см от глаза, в 20 лет — 8,3 см, в 30 лет—11 см, в 40 лет — 17 см, в 50 лет — 50 см, в 60—70 лет она приближается к 80 см.
Острота зрения. Преломляющие свойства, или рефракция, обеспечивают фокусирование изображения на сетчатке. Для четкого изображения необходимо, чтобы параллельные лучи от изображения сходились на сетчатке. Существуют два основных вида аномалии рефракции — дальнозоркость и близорукость.
Острота зрения отражает способность оптической системы глаза строить четкое изображение на сетчатке. Она измеряется путем определения наименьшего расстояния между двумя точками, достаточного для того, чтобы они не сливались, чтобы лучи от них попадали на разные рецепторы сетчатки.
Мерилом остроты зрения служит угол, который образуется между лучами, идущими от двух точек предмета к глазу,— угол зрения. Чем меньше этот угол, тем выше острота зрения. У большинства людей минимальная величина угла зрения составляет 1 мин. Принято считать этот угол нормой, а остроту зрения глаза, имеющего наименьший угол зрения 1 мин,— единицей остроты зрения. Это средняя величина нормы. Иногда здоровый глаз может обладать остротой зрения несколько меньшей, чем единица. Встречается и острота зрения, значительно превышающая единицу. С уменьшением освещенности острота зрения резко падает. Оптимальным для остроты зрения является диаметр зрачка около 3 мм. Для измерения остроты зрения пользуются таблицами, на которых изображены буквы или фигуры и у каждой строчки отмечено, с какого расстояния глаз видит каждую деталь под углом в V (1 мин).
При определении остроты зрения человек должен находиться на расстоянии 5 м от висящей на стене таблицы. Вначале определяют остроту зрения одного глаза, затем другого. Во время определения испытуемый прикрывает листом бумаги или рукой другой глаз. Показателем остроты считается та строка с наименьшими по размеру буквами, на которой испытуемый может отличить несколько букв.
Острота зрения у детей с нормальной рефракцией увеличивается с возрастом. Так, в 4—5 лет она в среднем равна 0,80%, в 5—6 лет —0,86%, в 7—8 лет —0,91%. В возрасте от 10 до 15 лет острота зрения повышается от 0,98 до 1,15.
Пространственное зрение. Видение пространства и ориентировка в пространстве совершенствуются в процессе онтогенеза. И. М. Сеченов придавал большое значение в развитии пространственного зрения формированию координированных движений зрительного аппарата. Он считал, что благодаря глазным движениям ребенок учится различать в зрительной картине взаимное расположение частей. Важным фактором, обеспечивающим восприятие пространства, является бинокулярное зрение — зрение двумя глазами. Оно позволяет ощущать рельефные изображения предметов, видеть глубину и определять расстояние предмета от глаза при рассматривании предметов левым и правым глазом.
Глубинное зрение совершенствуется с возрастом. Исследование остроты глубинного зрения в возрастном диапазоне от 6 до 17 лет показало наиболее интенсивный ее рост к 9 годам. В 16—17 лет этот показатель такой же, как у взрослого. Способность к стереоскопическому восприятию двойных изображений, формируясь постепенно, достигает максимальных значений в юношеском возрасте. Начиная с 40 лет область стереоскопического восприятия несколько уменьшается.
Световая и цветовая чувствительность. Рецепторный аппарат зрительного анализатора расположен на внутренней оболочке глаза — сетчатке. Сетчатка имеет сложную многослойную структуру. Она состоит из пигментного слоя, фоторецепторов и двух слоев нервных клеток, отростки которых образуют зрительный нерв. В сетчатке имеется два вида фоторецепторов: палочки — их у человека примерно 120—125 млн. и колбочки — 5—6 млн.
Палочки, чувствительность которых выше, ответственны за сумеречное зрение. Они расположены на периферии сетчатки. Колбочки воспринимают различные цвета. Они сосредоточены преимущественно в центре сетчатки, в основном в центральной ямке. Колбочки — аппарат дневного зрения. Они, в отличие от палочек, воспринимают зрительные сигналы при ярком освещении, т. е. чувствительность их к свету меньше.
У человека встречаются случаи частичного и полного нарушения цветового зрения. При полной цветовой слепоте человек видит все предметы одинаково окрашенными в серый цвет, никаких других цветов он не воспринимает. Частичное нарушение цветового зрения получило название дальтонизма (по имени английского химика Дальтона, у которого впервые было обнаружено это нарушение). Дальтоники обычно не различают красный и зеленый цвета (они им кажутся серыми разных оттенков). Около 4—5% всех мужчин страдают дальтонизмом. У женщин он встречается реже — до 0,5%. Для обнаружения дальтонизма пользуются специальными цветовыми таблицами.
Возбудимость зрительного анализатора зависит от количества светореактивных веществ в сетчатке. При действии света на глаз вследствие распада светореактивных веществ возбудимость глаза понижается. Это приспособление глаза к свету — световая адаптация. Например, при выходе из темного помещения на яркий солнечный свет мы вначале ничего не различаем, но вскоре адаптируемся к свету и прекрасно все видим. Снижение возбудимости глаза на свету тем больше, чем ярче свет. Особенно быстро понижается возбудимость в первые 3—5 мин.
В темноте в связи с восстановлением светореактивных веществ возбудимость глаза к свету возрастает — темновая адаптация. Возбудимость колбочек может возрасти в темноте в 20— 50 раз, а палочек — в 200—400 тыс. раз.
Кроме световой есть еще цветовая адаптация, т. е. падение возбудимости глаза при действии лучей, вызывающих цветовые ощущения. Чем интенсивнее цвет, тем быстрее падает возбудимость глаза. Наиболее быстро и резко понижается возбудимость при действии сине-фиолетового раздражителя, медленнее и меньше всего — зеленого.
При проецировании на сетчатку неподвижного изображения глаз скоро перестает его различать. Вследствие адаптации человек не мог бы видеть неподвижных предметов, если бы не непрерывные мелкие колебательные движения глаз, которые совершаются постоянно в течение 25 мс каждое. За это время прекращается адаптация соответствующего рецептивного поля и возобновляется эффект включения зрительного раздражения, поэтому человек может видеть неподвижный предмет.
Возрастные особенности световой чувствительности и цветового зрения. Световая и цветовая чувствительность изменяется с возрастом. Светоощущения есть уже у недоношенных детей. У них выявлено возбуждение как аппарата дневного, так и аппарата сумеречного зрения. Изменение световой чувствительности с возрастом в основном зависит от изменяющейся возбудимости зрительных нервных центров.
Световая чувствительность значительно увеличивается в возрасте от 4 до 20 лет и после 30 лет начинает снижаться. С возрастом изменяется критическая частота световых мельканий — наименьшее число перерывов света в 1 с, при которой наступает слияние мельканий; у детей 7—8 лет она составляет 25, у 9—10-летних —30, в 12—14 лет —40—41 кол/с.
Вопрос о развитии цветоощущений до конца не выяснен. По данным некоторых исследователей, цветоощущение присуще уже новорожденным. Исследование условных рефлексов выявило возможность дифференцирования цветов при образовании защитных мигательных и пищевых условных рефлексов на 3-м месяце жизни.
Показано, что грудные дети различают разные степени яркости цветов. В трехлетнем возрасте ребенок различает как абсолютную величину яркости цвета, так и соотношение яркости цветов. По мере созревания центральной нервной системы возрастает различительная цветовая чувствительность, резкое повышение которой отмечено в 10—12 лет. Различение цветов по цветовому тону, круто возрастая к 10 годам, продолжает увеличиваться до 30 лет, затем медленно снижается к старости.
Развитие зрительного анализатора в онтогенезе.Зрительный анализатор человека в процессе постнатального развития претерпевает значительные морфофункциональные перестройки. У новорожденного диаметр глазного яблока составляет 16 мм, а его масса - 3,0 г, к 20 годам эти цифры увеличиваются соответственно до 23-24 мм и 8,0 г. В первые годы жизни радужка содержит мало пигментов и имеет голубовато-белесоватый оттенок, а окончательное формирование ее окраски завершается только к 10-12 месяцам. Процесс развития и совершенствования зрительного анализатора идет от периферии центру (от рецепторов к коре больших полушарий). Миелинизация зрительных нервных путей заканчивается уже к 3-4 месяцам постнатального онтогенеза. Сенсорные и моторные функции зрения развиваются одновременно. В первые дни после рождения движения глаз несинхронны, при неподвижности одного глаза можно наблюдать движение другого. Способность фиксировать взглядом предмет, или, образно говоря, механизм точной настройки формируется в возрасте от 5 дней до 3-5 месяцев. Функциональное созревание зрительной зоны коры головного мозга, по некоторым данным, происходит уже к рождению ребенка, по другим - несколько позже.
Из-за снижения эластичности хрусталика с возрастом снижается и аккомодация. Так, у школьников хрусталик более плоский, поэтому очень часто встречается дальнозоркость. В 3 года дальнозоркость наблюдается у 82 % детей, а близорукость — у 2,5 %. Затем соотношение изменяется и число близоруких значительно увеличивается, достигая к 16 годам 11 %.
В процессе развития существенно меняются цветоощущения ребенка. У новорожденных в сетчатке функционируют только палочки, обеспечивающие черно-белое зрение. Колбочки, ответственные за цветовое зрение, еще незрелые, и их количество невелико, хотя функции цветоощущения у новорожденных есть, но полноценное включение колбочек в работу происходит только к концу 3-го года жизни. Максимального развития ощущение цвета достигает к 30 годам и затем постепенно снижается. Важное значение для формирования этой способности имеет тренировка.
Реакция на форму предмета отмечается уже у 5-месячного ребенка. У дошкольников первую реакцию вызывает форма предмета, затем его размеры и в последнюю очередь - цвет.
Острота зрения с возрастом повышается, улучшается и стереоскопическое зрение. Для сравнения приведем данные по остроте зрения (в условных единицах) у детей разного возраста: 1 неделя 0,004-0,002; 1 месяц 0,008-0,003; 1 год 0,3-0,6; З года 0,6-1,0; 5 лет 0,8-1,0; 7-15 лет 0,9-1,0.
Стереоскопическое зрение изменяется до 9-10 лет, а к 17-22 годам достигает своего оптимального уровня, причем с 6 лет у девочек острота стереоскопического зрения выше, чем у мальчиков.
В 7-8 лет глазомер у детей значительно лучше, чем у дошкольников, но хуже, чем у взрослых; половых различий не имеет. В дальнейшем у мальчиков линейный глазомер становится лучше, чем у девочек.
Интенсивно увеличивается и поле зрение у детей, к 7 годам его размер составляет приблизительно 80 % от размера поля зрения взрослого человека. В развитии поля зрения наблюдаются половые особенности. Поле зрения определяет объем учебной информации, воспринимаемой ребенком, т. е. пропускную способность зрительного анализатора, и, следовательно, учебные возможности. В процессе онтогенеза пропускная способность зрительного анализатора также изменяется и достигает в разные возрастные периоды следующих значений (бит/с, табл. 3).
Таблица 3.
Возраст | Девочки | Мальчики |
7-8 лет | 1,00 | 1,09 |
10-11 лет | 2,18 | 2,06 |
12-13 лет | 2,53 | 2,12 |
13-1 4 лет | 2,90 | 2,60 |
17-1 8 лет | 3,38 | 2,65 |
1 9-22 года | 3,13 | 2,88 |