Индикация вирусов в патологическом материале по обнаружению вирионов и вирусных телец-включений.
3.1 Методы прямого обнаружения вируса в исследуемом материале. Многие вирусные белки, которые называются структурными, обладают свойством самопроизвольно под действием межмолекулярных сил собираться в комочки, агрегаты (процесс самосборки). В каждый такой агрегат включается обычно по одной молекуле вирусных ДНК или РНК. Иногда в них могут включаться еще и липиды клеточного происхождения. Образующиеся таким путем частицы называются вирионами. В вирионах молекулы белков так взаимно ориентированы, что на них не могут действовать протеолитические ферменты, а молекулы вирусных ДНК или РНК оказываются недоступными для нуклеаз и защищенными ох действия физических факторов среды. Формирование вирионов каждого отдельного вируса возможно только в клетках определенного типа.
Вирионы можно рассматривать как покоящуюся неактивную форму существования вирусов. Поэтому в форме вирионов вирусы могут определенное время находиться и вне клеток без потери биологической активности.
Крупные вирусы (оспа, эктима), видимые в иммерсионной системе светового микроскопа получили название элементарные тельца.
Внутриклеточные тельца-включения – это обломки скоплений вирусных частиц или продукт реакции клетки на вирусную инфекцию. Их классифицируют по месту локализации в клетке, по гомогенности, по составу нуклеиновой кислоты, по тинкториальным свойствам.
При ряде вирусных инфекций обнаружение телец - включений имеет диагностическое значение. Многие из них настолько типичны, что обнаружение их стало одним из основных экспресс-методов диагностики бешенства, оспы, ринопневмонии лошадей, ринотрахеита крупного рогатого скота.
3.2 Методы окраски вирионов. Существует много методов окраски мазков, мазков - отпечатков. Самым распространенным является метод окраски по Морозову. Метод окраски прост, не требует дефицитных реактивов, выполним на занятиях.
Приготовленные мазки сушат на воздухе, помещают в вертикальном положении в дистиллированную воду на 10-15 минут и красят. Для окраски по Морозову готовят три реактива.
1) жидкость Руге.
2) протраву
3) красящий раствор аммиачного серебра.
Рассматривают препарат в иммерсионной системе. Элементарные тельца на светло - коричневом фоне препарата имеют вид темно - коричневых почти черных мелких зерен, образований.
Тельца-включения, образуемые рядом вирусов, получили специальные названия. Так, цитоплазматические тельца - включения, образуемые в нервных клетках млекопитающих вирусом бешенства, называют тельца Бабеша-Негри, в эпителиальных клетках овец - вирусом оспы овец - тельца Борреля, вирусом оспы кур - тельца Болингера. Как правило, РНК-содержащие вирусы образуют цитоплазматические, а ДНК-содержащие – внутриядерные тельца-включения Небольшая группа вирусов вызывает образование телец-включений обоих типов. Наибольшее практическое значение приобрели тельца Бабеша-Негри в диагностике бешенства. Из кусочков определенных отделов головного мозга (Аммоновых рогов, мозжечка, продолговатого мозга) готовят гистологические срезы. Полученные препараты окрашивают по методу Муромцева, Туревича, Селлерса и др. Каждый метод окраски дает свою характерную картину.
3.3 Устройство и принципы работы электронного и люминесцентного микроскопов. При любых микроисследованиях необходимо именно точные сведения о морфологических особенностях интересующего нас организма. Эти сведения не могут быть получены иначе, как путем изучения данного организма под микроскопом. В силу этого микроскоп становится важнейшим орудием для практического изучения микроорганизмов, и знакомство с ним является первым условием успеха в этой работе.
Целью различных видов микроскопии являются дальнейшее изучение морфологии вирусов и дифференциальная диагностика инфекционных болезней. По схеме строения электронный микроскоп аналогичен световому. В отличие от светового в электронных микроскопах изображение получается с помощью потока электронов.
Пучок электронов проходит через исследуемый препарат и его изображение проецируется на люминесцентный экран. Источником электронов является электронная пушка (вольфрамовая нить), нагреваемая электротоком. Электроны ускоряются и направляются вниз по колонке, проходя через несколько магнитных линз (конденсорная, объективная, проекционная). На экране возникает видимое изображение объекта, которое можно сфотографировать или просматривать на экране монитора (рис.7).
Чтобы предотвратить поглощение электронов воздухом, из микроскопа откачивают воздух вакуум - насосом.
Основные части микроскопа: колонка, панель управления, пишущее устройство, вакуумная система, соединительные кабели. В нижней части электронного микроскопа расположены масляные и диффузные насосы.
Максимальная разрешающая способность электронного микроскопа 2А°. По характеру исследования объектов различают микроскопы просвечивающего типа, сканирующие, эмиссионные, теневые.
При работе с электронным микроскопом важное значение имеет подготовка препаратов. Для просвечивающего электронного микроскопа исследуемые объекты должны быть в виде тонких срезов или вирусных суспензий. Объекты помещают на медные сеточки с подложками.
3.4 Методы подготовки препаратов: метод негативного контрастирования, метод отпечатков, метод напыления, метод ультратонких срезов.
Материалом для электронно-микроскопических исследований вирусов могут быть смывы со слизистых оболочек, содержимое кишечника, кожные поражения, корочки, кусочки органов и тканей, аллантоисная жидкость куриного эмбриона, вируссодержащая культуральная жидкость культуры клеток. При подготовке препаратов большое значение имеет концентрация вируса в материале и степень его контаминации балластными веществами. В зависимости от этих факторов и выбирают методику подготовки исходного материала.
С помощью электронного микроскопа в отдельных случаях в считанные минуты по морфологии вирусных частиц можно определить таксономическое положение вируса.
Метод иммунофлуоресценции называют еще РИФ, метод меченых антител.
Принцип РИФ основан на использовании явления флюоресценции, который состоит в испускании света атомами вещества, поглотившими избыточную внешнюю энергию и пришедшими в состояние возбуждения. При этом используют люминесцентную микроскопию (рис. 7)
Рисунок 7. Люминесцентный микроскоп МЛ-2
В диагностических исследованиях методом РИФ в качестве объекта исследования могут быть мазки – отпечатки, срезы органов и тканей, соскобы, гистологические срезы, препараты тканевых культур.
При прямом методе РИФ мазок - отпечаток обрабатывают сывороткой, меченной антителами, гомологичными тому вирусу, наличие которого предполагается. Если в мазке содержится антиген, гомологичный антителам сыворотки, то образуется комплекс антиген + антитело. Препараты отмывают, сушат и исследуют под люминесцентным микроскопом, который устроен так, что на препарат падает пучок сине-фиолетовых лучей, а в глаз наблюдателя попадают только желто-зеленые лучи, которые испускает комплекс антиген + антитело. По этому свечению и судят о наличии в материале антигенов, гомологичных антителам меченой сыворотки.
Непрямой метод состоит в том, что мазок - отпечаток обрабатывают дважды: вначале немеченой антивирусной сывороткой, а затем после отмывания - меченной антивидовой. После второго отмывания препарат высушивают и исследуют под люминесцентным микроскопом. Обнаружение в препарате специфической флюоресценции указывают на наличие в материале антигенов, гомологичных использованной противовирусной сыворотке.
По эффективности непрямой метод имеет преимущества перед прямым методом.
В целом метод флюоресцирующих антител обладает рядом достоинств перед другими методами.