V.2. жизнь как антиэнтропийное явление
Страшно, за человека страшно мне.
В. Шекспир
Жизнь - по-видимому, сложнейшее явление во Вселенной. В главе IV мы уже отмечали материально-информационную сущность живой материи. Теперь пойдем несколько дальше и свяжем явления жизни с введенными выше количественными понятиями энтропии и информации (негэнтропии), что окажется особенно важным для понимания механизмов Фортуны.
Своеобразие способа существования живой материи (биологических объектов) заключается в том, что все живое от клетки до человека функционирует, только поддерживая определенную (и создавая новую) степень упорядоченности в себе и в окружающей среде. Вспоминая содержание предыдущего раздела (см. соотношения (1) и (3)), можно утверждать, что биологические объекты локально уменьшают энтропию среды обитания или увеличивают информативность ее состояния. В этом принципиальное отличие живого, от неживого.
Действительно, любой объект, кроме живого, будучи предоставлен самому себе; постепенно деградирует, то есть энтропия его состояния увеличивается. Так, например, разрушаются со временем под действием внешних факторов брошенные здания:
ржавеют металлические детали, гниют деревянные и т. д. Живое же, соприкасаясь с внешним миром (инстинктивно или сознательно), поддерживает определенный стационарный уровень своих внутренних систем (то, что в медицине называется гомеостазом). Сложные биологические системы (например, человек) способны, кроме того, преобразовывать окружающую действительность таким образом, чтобы сделать свое существование более комфортным. Ясно, что такое преобразование должно носить упорядочивающий характер: строительство различных сооружений, добыча полезных ископаемых, их обогащение и т. д.
При этом не следует думать, что биообъекты нарушают фундаментальный второй закон термодинамики, согласно которому энтропия любой изолированной системы должна увеличиваться. Дело в том, что живые биосистемы, являются, существенно, неравновесными, так как обмениваются с окружающей средой веществом и энергией. Термодинамика таких систем (их еще называют открытыми) разработана в основном усилиями лауреата
Нобелевской премии И. Пригожиным [З].
Чтобы пояснить ситуацию, воспользуемся примером из книги М.В. Волькенштейна [4]. Рассмотрим изолированную систему, состоящую из организма и некоторой внешней среды. Организм получает из среды необходимые ему продукты питания и кислород; в свою очередь, в среду поступают продукты жизнедеятельности организма. В таких условиях находится, например, космонавт. Он является открытой системой по отношению к космическому кораблю, но сам корабль в целом можно считать достаточно хорошо изолированным от внешнего мира. Изменение энтропии системы корабль - космонавт определяется равенством:
dS = dS1 + dS2 ,
где dS1 - изменение энтропии космонавта;
dS2 - окружающей его в корабле среды.
Согласно второму началу термодинамики dS>0, так как система неравновесна вследствие протекания процессов жизнедеятельности космонавта. Однако, согласно приведенным выше соображениям, вклад космонавта dS,<0 (если, конечно, он здоров и его состояние не ухудшается).
Это значит, что dS;>0 и |dS| > |dS,|, то есть возрастание упорядоченности в организме космонавта в результате потребления продуктов питания перекрывается ее уменьшением вследствие разупорядочения этих продуктов организмом и выделения образующихся при этом более простых веществ в окружающую среду. Следовательно, энтропия выделяемых веществ значительно больше, чем энтропия продуктов питания. Такие же соображения можно отнести и к биосфере Земли, если посчитать (конечно, достаточно условно), что Солнечная система является изолированной. В этом случае гигантское производство энтропии за счет излучения Солнца значительно перекрывает ее уменьшение в живых организмах и растениях на Земле, и энтропия всей системы в целом растет.
Особый интерес представляют стационарные состояния открытых неравновесных систем. Стационарное состояние достигается тогда, когда производство энтропии системой точно компенсируется уходом энтропии во внешнюю среду. Возвращаясь к примеру с космонавтом, можно считать, что в стационарном состоянии ,должно, иметь место следующее соотношение для производных по времени:
dS/dt = dS1/dt + dS2/dt
то есть
dS1/dt <0, dS2/dt >0, причем
dS/dt = -dS,/dt.
Очень важно, что стационарное состояние не является равновесным. В последнем случае имело бы место равенство:
dS/dt = dS1/dt = -dS2/dt = 0,
то есть энтропия достигала бы максимума.
Стационарные состояния могут существовать только в открытых системах. Эти состояния являются, существенно, неравновесными, так как достигаются вдали от равновесия. Живой организм является одной из таких систем, которые обладают способностью поддерживать свои параметры более или менее постоянными за счет взаимодействия с окружающей средой.
Помимо уменьшения энтропии, то есть производства порядка в рамках собственного организма, биологическая система способна увеличивать упорядоченность и в окружающей среде. Человек в этом смысле - наиболее показательный пример. Все виды промышленного и сельскохозяйственного производства приводят к созданию порядка из беспорядка (примеры здесь бесчисленны и очевидны). То же самое относится и к творческой деятельности. Так, ученые из разрозненных (беспорядочных) фактов создают строгие и последовательные (упорядоченные) теории; музыкальные фразы и тексты книг представляют собой составленные определенным образом чередования соответственно семи нот и букв алфавита. Конечно, следует помнить, что и в этих случаях производство энтропии за счет "отходов" (в прямом и переносном смысле) не дает нарушить второе начало.
Обычно говорят, что жизнь- это способ существования биологических объектов. Это слишком общее определение, никак не характеризующее данное явление. Теперь мы можем его уточнить, сказав, что отличительной чертой этого способа существования является производство негэнтропии (отрицательной энтропии) или информации. Именно это отличает живое от неживого. Именно это позволяет живому оставаться живым, а в определенных случаях, кроме того, и улучшать условия жизни.