Нервная регуляция вегетативных функций

Физиология дыхания

Дыхание – сложный непрерывный процесс, в результате которого постоянно обновляется газовый состав крови.

В процессе дыхания различают три звена: внешнее, или легочное, дыхание, транспорт газов кровью и внутреннее, или тканевое, дыхание.

Внешнее дыхание — это газообмен между организмом и окружающим его атмосферным воздухом. Осуществляется в два этапа — обмен газов между атмосферным и альвеолярным воздухом и газообмен между кровью легочных капилляров и альвеолярным воздухом. Аппарат внешнего дыхания включает в себя дыхательные пути, легкие, плевру, скелет грудной клетки и ее мышцы, а также диафрагму. Основной функцией аппарата внешнего дыхания является обеспечение организма кислородом и освобождение его от избытка углекислого газа. О функциональном состоянии аппарата внешнего дыхания можно судить по ритму, глубине, частоте дыхания, по величине легочных объемов, по показателям поглощения кислорода и выделения углекислого газа и т. д.

Транспорт газов осуществляется кровью. Онобеспечивается разностью парциального давления (напряжения) газов по пути их следования: кислорода от легких к тканям, углекислого газа от клеток к легким.

Внутреннее или тканевое дыхание также может быть разделено на два этапа. Первый этап - обмен газов между кровью и тканями. Второй — потребление кислорода клетками и выделение ими углекислого газа (клеточное дыхание).

СОСТАВ ВДЫХАЕМОГО, ВЫДЫХАЕМОГО И АЛЬВЕОЛЯРНОГО ВОЗДУХА

Человек дышит атмосферным воздухом, который имеет следующий состав: 20,94% кислорода, 0,03% углекислого газа, 79,03% азота. В выдыхаемом воздухе обнаруживается 16,3% кислорода, 4% углекислого газа, 79,7% азота.

Альвеолярный воздух по составу отличается от атмосферного. В альвеолярном воздухе резко уменьшается содержание кислорода и возрастает количество углекислого газа. Процентное содержание отдельных газов в альвеолярном воздухе: 14,2—14,6% кислорода, 5,2—5,7% углекислого газа, 79,7—80% азота.

СТРОЕНИЕ ЛЕГКИХ.

Легкие — парные дыхательные органы, расположенные в герметически замкнутой грудной полости. Их воздухоносные пути представлены носоглоткой, гортанью, трахеей. Трахея в грудной полости делится на два бронха — правый и левый, каждый из которых, многократно разветвляясь, образует так называемое бронхиальное дерево. Мельчайшие бронхи — бронхиолы на концах расширяются в слепые пузырьки — легочные альвеолы.

В дыхательных путях газообмен не происходит, и состав воздуха не меняется. Пространство, заключенное в дыхательных путях называется мертвым, или вредным. При спокойном дыхании объем воздуха в мертвом пространстве составляет 140—150 мл.

Строение легких обеспечивает выполнение ими дыхательной функции. Тонкая стенка альвеол состоит из однослойного эпителия, легко проходимого для газов. Наличие эластических элементов и гладких мышечных волокон обеспечивает быстрое и легкое растяжение альвеол, благодаря чему они могут вмещать большие количества воздуха. Каждая альвеола покрыта густой сетью капилляров, на которые разветвляется легочная артерия.

Каждое легкое покрыто снаружи серозной оболочкой —плеврой, состоящей из двух листков: пристеночного и легочного (висцерального). Между листками плевры имеется узкая щель, заполненная серозной жидкостью — плевральная полость.

Расправление и спадение легочных альвеол, а также движение воздуха по воздухоносным путям сопровождается возникновением дыхательных шумов, которые можно исследовать методом выслушивания (аускультации).

Давление в плевральной полости и в средостении в норме всегда отрицательное. За счет этого альвеолы всегда находятся в растянутом состоянии. Отрицательное внутригрудное давление играет значительную роль в гемодинамике, обеспечивая венозный возврат крови к сердцу и улучшая кровообращение в легочном круге, особенно в фазу вдоха.

ДЫХАТЕЛЬНЫЙ ЦИКЛ.

Дыхательный цикл состоит из вдоха, выдоха и дыхательной паузы. Длительность вдоха у взрослого человека от 0,9 до 4,7 с, длительность выдоха — 1,2—6 с. Дыхательная пауза различна по величине и даже может отсутствовать.

Дыхательные движения совершаются с определенным ритмом и частотой, которые определяют по числу экскурсий грудной клетки в 1 мин. У взрослого человека частота дыхательных движений составляет 12—18 в 1 мин. Глубину дыхательных движений определяют по амплитуде экскурсий грудной клетки и с помощью специальных методов, позволяющих исследовать легочные объемы.

Механизм вдоха. Вдох обеспечивается расширением грудной клетки вследствие сокращения дыхательных мышц – наружных межреберных и диафрагмы. Поступление воздуха в легкие в значительной степени зависит от отрицательного давления в плевральной полости.

Механизм выдоха. Выдох (экспирация) осуществляется в результате расслабления дыхательной мускулатуры, а также вследствие эластической тяги легких, стремящихся занять исходное положение. Эластические силы легких представлены тканевым компонентом и силами поверхностного натяжения, которые стремятся сократить альвеолярную сферическую поверхность до минимума. Однако альвеолы в норме никогда не спадаются. Причина этого – наличие в стенках альвеол поверхностно-активного стабилизирующего вещества – сурфактанта, вырабатываемого альвеолоцитами.

ЛЕГОЧНЫЕ ОБЪЕМЫ. ЛЕГОЧНАЯ ВЕНТИЛЯЦИЯ.

Дыхательный объем — количество воздуха, которое человек вдыхает и выдыхает при спокойном дыхании. Его объем составляет 300 — 700 мл.

Резервный объем вдоха — количество воздуха, которое может быть введено в легкие, если вслед за спокойным вдохом произвести максимальный вдох. Резервный объем вдоха равняется 1500—2000 мл.

Резервный объем выдоха — тот объем воздуха, который удаляется из легких, если вслед за спокойным вдохом и выдохом произвести максимальный выдох. Он составляет 1500—2000 мл.

Остаточный объем — это объем воздуха, который остается в легких после максимально глубокого выдоха. Остаточный объем равняется 1000—1500 млвоздуха.

Дыхательный объем, резервные объемы вдоха и выдоха составляют так называемую жизненную емкость легких. Жизненная емкость легких у мужчин молодого возраста составляет 3,5—4,8 л, у женщин — 3—3,5 л. Общая емкость легких состоит из жизненной емкости легких и остаточного объема воздуха.

Легочная вентиляция — количество воздуха, обмениваемое в 1 мин. Легочную вентиляцию определяют путем умножения дыхательного объема на число дыханий в 1 мин (минутный объем дыхания). У взрослого человека в состоянии относительного физиологического покоя легочная вентиляция составляет 6—8 л в 1 мин.

Легочные объемы могут быть определены с помощью специальных приборов — спирометра и спирографа.

ДЫХАТЕЛЬНЫЙ ЦЕНТР.

Ритмическая последовательность вдоха и выдоха, а также изменение характера дыхательных движений в зависимости от состояния организма регулируются дыхательным центром, расположенным в продолговатом мозге. В дыхательном центре имеются две группы нейронов:инспираторные и экспираторные.При возбуждении инспираторных нейронов, обеспечивающих вдох, деятельность экспираторных нервных клеток заторможена, и наоборот.

В верхней части моста головного мозга (варолиев мост) находится пневмотаксический центр, который контролирует деятельность расположенных ниже центров вдоха и выдоха и обеспечивает правильное чередование циклов дыхательных движений.

Дыхательный центр, расположенный в продолговатом мозге, посылает импульсы к мотонейронам спинного мозга, иннервирующим дыхательные мышцы. Диафрагма иннервируется аксонами мотонейронов, расположенных на уровне III—IV шейных сегментов спинного мозга. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах (III—XII) грудных сегментов спинного мозга.

Регуляция деятельности дыхательного центра.

Регуляция деятельности дыхательного центра осуществляется с помощью гуморальных, рефлекторных механизмов и нервных импульсов, поступающих из вышележащих отделов головного мозга.

Гуморальные механизмы. Специфическим регулятором активности нейронов дыхательного центра является углекислый газ, который действует на дыхательные нейроны непосредственно и опосредованно. В ретикулярной формации продолговатого мозга, вблизи дыхательного центра, а также в области сонных синусов и дуги аорты обнаруженыхеморецепторы, чувствительные к углекислому газу. При увеличении напряжения углекислого газа в крови хеморецепторы возбуждаются, и нервные импульсы поступают к инспираторным нейронам, что приводит к повышению их активности. Углекислый газ повышает возбудимость нейронов коры головного мозга. В свою очередь клетки КГМ стимулируют активность нейронов дыхательного центра. При оптимальном содержании в крови углекислого газа и кислорода наблюдаются дыхательные движения, отражающие умеренную степень возбуждения нейронов дыхательного центра. Эти дыхательные движения грудной клетки получили название эйпноэ. Избыточное содержание углекислого газа и недостаток кислорода в крови усиливают активность дыхательного центра, что обусловливает возникновение частых и глубоких дыхательных движений – гиперпноэ. Еще большее нарастание количества углекислого газа в крови приводит к нарушению ритма дыхания и появлению одышки – диспноэ. Понижение концентрации углекислого газа и избыток кислорода в крови угнетают активность дыхательного центра. В этом случае дыхание становится поверхностным, редким и может наступить его остановка – апноэ.

Механизм первого вдоха новорожденного.

В организме матери газообмен плода происходит через пупочные сосуды. После рождения ребенка и отделения плаценты указанная связь нарушается. Метаболические процессы в организме новорожденного приводят к образованию и накоплению углекислого газа, который, так же как и недостаток кислорода, гуморально возбуждает дыхательный центр. Кроме того, изменение условий существования ребенка приводит к возбуждению экстеро- и проприорецепторов, что также является одним из механизмов, принимающих участие в осуществлении первого вдоха новорожденного.

Рефлекторные механизмы.

Различают постоянные и непостоянные (эпизодические) рефлекторные влияния на функциональное состояние дыхательного центра.

Постоянные рефлекторные влияния возникают в результате раздражения рецепторов альвеол (рефлекс Геринга — Брейера), корня легкого и плевры (пульмоторакальный рефлекс), хеморецепторов дуги аорты и сонных синусов (рефлекс Гейманса), проприорецепторов дыхательных мышц.

Наиболее важным рефлексом является рефлекс Геринга — Брейера. В альвеолах легких заложены механорецепторы растяжения и спадения, являющиеся чувствительными нервными окончаниями блуждающего нерва. Любое увеличение объема легочных альвеол возбуждает эти рецепторы. Рефлекс Геринга — Брейера является одним из механизмов саморегуляции дыхательного процесса, обеспечивая смену актов вдоха и выдоха. При растяжении альвеол во время вдоха нервные импульсы от рецепторов растяжения по блуждающему нерву идут к экспираторным нейронам, которые, возбуждаясь, тормозят активность инспираторных нейронов, что приводит к пассивному выдоху. Легочные альвеолы спадаются, и нервные импульсы от рецепторов растяжения уже не поступают к экспираторным нейронам. Активность их падает, что создает условия для повышения возбудимости инспираторной части дыхательного центра и осуществлению активного вдоха.

Кроме того, активность инспираторных нейронов усиливается при нарастании концентрации углекислого газа в крови, что также способствует проявлению вдоха.

Пульмоторакальный рефлекс возникает при возбуждении рецепторов, заложенных в легочной ткани и плевре. Проявляется этот рефлекс при растяжении легких и плевры. Рефлекторная дуга замыкается на уровне шейных и грудных сегментов спинного мозга.

К дыхательному центру постоянно поступают нервные импульсы от проприорецепторов дыхательных мышц. Во время вдоха происходит возбуждение проприорецепторов дыхательных мышц и нервные импульсы от них поступают в инспираторную часть дыхательного центра. Под влиянием нервных импульсов тормозится активность вдыхательных нейронов, что способствует наступлению выдоха.

Непостоянные рефлекторные влияния на активность дыхательных нейронов связаны с возбуждением разнообразных экстеро- и интерорецепторов. К ним относятся рефлексы, возникающие при раздражении рецепторов слизистой оболочки верхних дыхательных путей, слизистой носа, носоглотки, температурных и болевых рецепторов кожи, проприорецепторов скелетных мышц. Так, например, при внезапном вдыхании паров аммиака, хлора, сернистого ангидрида, табачного дыма и некоторых других веществ происходит раздражение рецепторов слизистой оболочки носа, глотки, гортани, что приводит к рефлекторному спазму голосовой щели, а иногда даже мускулатуры бронхов и рефлекторной задержке дыхания.

При раздражении эпителия дыхательных путей накопившейся пылью, слизью, а также попавшими химическими раздражителями и инородными телами наблюдается чиханье и кашель. Чиханье возникает при раздражении рецепторов слизистой оболочки носа, кашель — при возбуждении рецепторов гортани, трахеи, бронхов.

Влияние клеток коры большого мозга на активность дыхательного центра.

По М. В. Сергиевскому, регуляция активности дыхательного центра представлена тремя уровнями.

Первый уровень регуляции — спинной мозг. Здесь располагаются центры диафрагмальных и межреберных нервов, обусловливающие сокращение дыхательных мышц. Второй уровень регуляции — продолговатый мозг. Здесь находится дыхательный центр. Этот уровень регуляции обеспечивает ритмичную смену фаз дыхания и активность спинномозговых мотонейронов, аксоны которых иннервируют дыхательную мускулатуру. Третий уровень регуляции — верхние отделы головного мозга, включающие и корковые нейроны. Только при участии коры большого мозга возможно адекватное приспособление реакций системы дыхания к изменяющимся условиям окружающей среды.

Физиология пищеварения

Под пищеварением понимается совокупность физических, химических и физиологических процессов, обеспечивающих обработку и превращение пищевых продуктов в простые химические соединения, способные усваиваться клетками организма.

Функции желудочно-кишечного тракта:

1. Моторная, или двигательная, функция осуществляется мускулатурой пищеварительного аппарата и заключается в жевании, глотании, передвижении пищи по пищеварительному тракту и удалении из организма непереваренных остатков.

2. Секреторная функция заключается в выработке железистыми клетками пищеварительных соков: слюны, желудочного, поджелудочного, кишечного соков и желчи.

3. Инкреторная функция связана с образованием в пищеварительном тракте ряда гормонов, которые оказывают специфическое воздействие на процесс пищеварения.

4. Экскреторная функция пищеварительного аппарата обеспечивается выделением пищеварительными железами в полость желудочно-кишечного тракта продуктов обмена (например, мочевины, аммиака, желчных пигментов), воды, солей тяжелых металлов, лекарственных веществ, которые затем удаляются из организма.

5. Всасывательная функция осуществляется слизистой оболочкой желудка и кишечника.

Процесс пищеварения происходит в полости рта, желудке, двенадцатиперстной кишке, тонком и толстом кишечнике.

ПИЩЕВАРЕНИЕ В РОТОВОЙ ПОЛОСТИ

Ротовая полость — входные ворота желудочно-кишечного тракта. В слизистой оболочке щек, губ, языка располагаются многочисленные чувствительные нервные окончания, представленные тактильными, температурными, болевыми, вкусовыми и осморецепторами.

Пищеварение в полости рта слагается из сосания (у ребенка раннего возраста), жевания, слюноотделения и глотания. Оно начинается с приема пищи, который является пусковым механизмом для функционирования желудочно-кишечного тракта.

Жевание — рефлекторный акт. В результате его пища измельчается. В процессе жевания происходит смешивание измельченной пищи со слюной и формирование пищевого комка. У взрослого человека пищевой комок образуется, в среднем, в течение 30 с. Рефлекторный центр акта жевания локализуется в продолговатом мозге (входит в состав комплексного пищевого центра). Жевание является мощным фактором, стимулирующим секрецию слюны и отделение других пищеварительных соков.

Слюнные железы.

Слюнные железы делятся на малые и большие. Многочисленные малые слюнные железы имеются в слизистой оболочке губ, щек, твердого и мягкого неба, языка и глотки. Большие слюнные железы находятся вне ротовой полости и связаны с ней выводными протоками. Самой крупной из слюнных желез является околоушная, которая у человека расположена спереди и несколько ниже ушной раковины. Вторыми по величине слюнными железами являются подчелюстные и затем подъязычные.

Состав, свойства и значение слюны.

Слюна — первый пищеварительный сок. У взрослого человека за сутки ее образуется 0,5—2 л. В слюне имеются самые различные по происхождению белки, в том числе белковое слизистое вещество —муцин. Пищевой комок, увлажненный слюной, благодаря муцину становится скользким и легко проходит по пищеводу.

Основными ферментами слюны являютсяамилаза (птиалин) и мальтаза, которые действуют только в слабощелочной среде. Амилаза расщепляет крахмал (полисахарид) до мальтозы (дисахарид). Мальтаза действует на мальтозу и сахарозу и расщепляет их до глюкозы. Благодаря наличию в слюне лизоцима она обладает бактерицидными свойствами и предупреждает развитие кариеса.

Слюна выполняет ряд функций:

Пищеварительная функция осуществляется за счет ферментов амилазы и мальтазы; благодаря растворению пищевых веществ слюна обеспечивает воздействие пищи на вкусовые рецепторы и способствует возникновению вкусовых ощущений; слюна смачивает и связывает благодаря муцину отдельные частицы пищи и тем самым участвует в формировании пищевого комка; слюна стимулирует секрецию желудочного сока; она необходима для акта глотания.

Экскреторная функция слюны заключается в том, что в составе слюны могут выделяться некоторые продукты обмена, такие как мочевина, мочевая кислота, лекарственные средства (хинин, стрихнин) и ряд других веществ, поступивших в организм (соли ртути, свинца, алкоголь).

Защитная функция слюны состоит в отмывании раздражающих веществ, попавших в ротовую полость; бактерицидным действием слюна обладает благодаря присутствию лизоцима; кровоостанавливающим действием в связи с наличием в слюне тромбопластических веществ.

Пища находится в полости рта непродолжительное время — 15—30 с, поэтому в ротовой полости не происходит полного расщепления крахмала. Однако действие ферментов слюны продолжается некоторое время в желудке. Это становится возможным потому, что пищевой комок, попавший в желудок, пропитывается кислым желудочным соком не сразу, а постепенно — в течение 20— 30 мин. В это время во внутренних слоях пищевого комка продолжается действие ферментов слюны и происходит расщепление углеводов.

Влияние состава пищевых продуктов на слюноотделение.

Качество и количество отделяемой слюны определяется характером раздражителя. Если в состав пищи входят продукт растительного происхождения, то в слюне увеличиваете количество ферментов, обеспечивающих расщепление углеводов. Количество слюны также зависит от характера пищи. Если в пище содержится мало воды, например, при употреблении сухарей, то выделяется слюна с большим содержанием жидкости. Когда же в состав пищи включено значительное количество воды, то ее содержание в выделяющейся слюне уменьшается.

Регуляция слюноотделения.

Слюноотделение является реакцией на раздражение рецепторов ротовой полости, на раздражение рецепторов желудка, при эмоциональном возбуждении.

Эфферентными (центробежными) нервами, иннервирующими каждую слюнную железу, являются парасимпатические и симпатические волокна. Парасимпатическая иннервация слюнных желез осуществляется секреторными волокнами, проходящими в составе языко-глоточного и лицевого нервов. Симпатическая иннервация слюнных желез осуществляется симпатическими нервными волокнами, которые начинаются от нервных клеток боковых рогов спинного мозга (на уровне 2—6-го грудных сегментов) и прерываются в верхнем шейном симпатическом ганглии.

Раздражение парасимпатических волокон приводит к образованию обильной и жидкой слюны. Раздражение симпатических волокон вызывает отделение небольшого количества густой слюны.

Центр слюноотделения находится в ретикулярной формации продолговатого мозга. Он представлен ядрами лицевого и языкоглоточного нервов.

Чувствительными (центростремительными, афферентными) нервами, связывающими ротовую полость с центром слюноотделения, являются волокна тройничного, лицевого, языкоглоточного и блуждающего нервов. По этим нервам передаются импульсы в центральную нервную систему от вкусовых, тактильных, температурных, болевых рецепторов ротовой полости.

Слюноотделение осуществляется по принципу безусловных и условных рефлексов. Безусловнорефлекторное слюноотделение происходит при попадании пищи в ротовую полость. Слюноотделение может осуществляться и условнорефлекторно. Вид и запах пищи, звуковое раздражение, связанные с приготовлением пищи, приводят к отделению слюны. У человека и животных условнорефлекторное слюноотделение возможно только при наличии аппетита.

Глотание.

Глотаниеявляется безусловнорефлекторным актом, в результате которого пищевой комок из полости рта проводится через пищевод в желудок. Твердая пища проходит по пищеводу в течение б—8 с, жидкая — 2—3 с. Акт глотания обеспечивается многочисленными связями нейронов центра глотания с другими центрами, расположенными в продолговатом мозге.

Механизм открытия кардиального сфинктера. Кардиальный сфинктер открывается рефлекторно при раздражении механорецепторов нижнего отдела пищевода, а также рецепторов слизистой оболочки ротовой полости и глотки. Блуждающие нервы понижают тонус кардиального сфинктера и способствуют его открытию. Симпатические нервы повышают тонус сфинктера и обеспечивают его закрытие.

ПИЩЕВАРЕНИЕ В ЖЕЛУДКЕ

Желудок является резервуаром для пищи. Его вместимость у взрослого человека около 3 л.

Эфферентная иннервация желудка осуществляется вегетативной нервной системой. Симпатическая иннервация обеспечивается волокнами чревных, парасимпатическая — волокнами блуждающих нервов.Кроме того, в эфферентной иннервации желудка принимают участие волокна диафрагмального нерва. Афферентные импульсы от рецепторов желудка поступают в центральную нервную систему по волокнам блуждающего нерва.

Функции желудка.

Секреторная функция желудка обеспечивается железами, находящимися в его слизистой оболочке.

Моторная функция осуществляется за счет сокращения мускулатуры стенки желудка, благодаря чему происходит перемешивание пищи в желудке и продвижение ее в двенадцатиперстную кишку.

Всасывательная функция способствует поступлению в организм из желудка воды, минеральных солей, спирта, лекарственных веществ, продуктов расщепления белка.

Экскреторная функция желудка заключается в выделении с желудочным соком продуктов обмена белка (мочевина), углеводов (молочная кислота), различных лекарственных веществ (йод, хинин, морфий, мышьяк, салицилат натрия).

Инкреторная функция связана с тем, что в желудке образуется ряд гормонов, которые оказывают специфическое действие на процесс пищеварения. Кроме того, в желудке образуется антианемический гормон.

Желудок регулирует температуру принятой пищи, участвует в регуляции реакции внутренней среды организма.

Бактерицидная функция осуществляется за счет соляной кислоты желудочного сока, которая стерилизует содержимое желудка.

Железы желудка.В слизистой оболочке желудка различают три вида желез: кардиальные, собственные железы желудка (фундальные) и железы привратника (пилорические). Железы состоят из главных, добавочных, мукоцитов, париетальных гландулоцитов (обкладочных клеток). Главные клетки вырабатывают пепсиноген, добавочные клетки и мукоциты — мукоидный секрет. Обкладочные клетки выделяют хлористоводородную кислоту. Кроме того, в слизистой оболочке желудка обнаружены клетки (аргентаффиноциты), которые продуцируют биогенные амины (серотонин), и клетки, вырабатывающиегастрин.

Желудочный сок малой кривизны желудка, дна и тела желудка кислый. В направлении к двенадцатиперстной кишке количество и размер обкладочных клеток уменьшается, и в антральной части желудка они отсутствуют. Вследствие этого и сок этой части желудка имеет щелочную реакцию.

Состав, свойства и значение желудочного сока.

У взрослого человека в течение суток образуется около 2—2,5 лжелудочного сока.

Желудочный сок содержит ферменты (пепсин, желатиназу, химозин и др.), хлористоводородную кислоту (0,4—0,6%), гастромукопротеин, слизь, минеральные вещества, воду. Первостепенное значение среди ферментов имеет пепсин. Пепсин проявляет свое действие только в кислой среде. Он расщепляет белки до альбумоз и пептонов. Ферментативная активность гастриксина близка к активности пепсина. Химозин вызывает створаживание молока. В желудочном соке обнаружены также непротеолитические ферменты. Одним из таких ферментов является лизоцим, обеспечивающий бактерицидные свойства желудочного сока.

Влияние состава пищевых продуктов на желудочную секрецию.

Железы желудка вне процесса пищеварения выделяют только слизь и пилорический сок. После поступления пищи в ротовую полость или при виде пищи, ее запахе и действии на организм других раздражителей, связанных с едой, начинается сокоотделение в желудке. Сокоотделение начинается через 5—9 мин после того, как человек или животное начали есть.

Продолжительность секреторного процесса, количество и качество желудочного сока находятся в строгой зависимости от характера пищи. Начало секреции при любом пищевом раздражителе всегда связано с обстановкой, предшествующей и сопутствующей принятию пищи, а также рефлекторным воздействием с рецепторов ротовой полости и глотки на железистый аппарат желудка. В результате в 1-й час количество и качество желудочного сока, выделяющегося при употреблении хлеба и мяса, не зависели от химических свойств пищи. В последующие часы интенсивность и продолжительность секреции желудочного сока определяется химическими свойствами пищи (составные части пищи, продукты ее переваривания, гормоны). Обнаружено также, что больше всего сока выделяется после приема мяса, меньше — хлеба и молока. Длительность секреции сока различна: на мясо сок выделяется в течение 7 ч, на хлеб — 10 ч, на молоко — 6ч. Самая высокая кислотность желудочного сока наблюдается после употребления мяса и наиболее низкая – после приема хлеба.

Регуляция желудочной секреции.

Весь период желудочной секреции делят на три фазы:

Сложнорефлекторная фаза осуществляется на базе условных и безусловных рефлексов. Сок, который начинает выделяться при раздражении обонятельных, зрительных, слуховых рецепторов, Павлов назвал запальным, аппетитным. Этот сок выделяется в небольшом количестве, но он богат ферментами и, следовательно, обладает большой переваривающей способностью. С момента попадания пищи в ротовую полость начинается безусловнорефлекторное отделение желудочного сока. От рецепторов ротовой полости нервные импульсы поступают в пищевой центр продолговатого мозга по волокнам тройничного, лицевого, языкоглоточного нервов. Возбуждение от пищевого центра по эфферентным волокнам достигает желез желудка и повышает их секреторную активность. Первая фаза желудочной секреции длится 30—40 мин и имеет большое значение для пищеварения.

Желудочная фаза секреции наступает при соприкосновении пищи со слизистой оболочкой самого желудка. Под влиянием раздражения пищеймеханорецепторов желудка возникшее возбуждение достигает по чувствительным волокнам блуждающего нерва пищевого центра продолговатого мозга и от него по секреторным нервам нервные импульсы поступают к железам желудка.

К числу химических веществ, способных оказывать непосредственное влияние на секрецию желез слизистой оболочки желудка, относятся экстрактивные вещества, спирты, продукты расщепления пищи (альбумозы и пептоны). Сильное действие на желудочную секрецию оказывает гистамин, который содержится в пищевых веществах и слизистой оболочке желудка, а также ацетилхолин, освобождающийся при соприкосновении пищевых веществ со слизистой оболочкой канала привратника. В слизистой оболочке привратниковой части желудка образуется гормон гастрин, который, всасываясь в кровь, также стимулирует отделение желудочного сока.

Кишечная фаза желудочной секреции начинается с момента поступления пищи в кишечник. Пищевая кашица раздражает механо-, осмо-, хеморецепторы слизистой оболочки кишечника и рефлекторно изменяет интенсивность желудочной секреции. Секреция желез желудка тормозится продуктами расщепления жира, гормонами: гастрогастроном и энтерогастороном, вырабатываемыми слизистой оболочкой желудка и верхнего отдела тонкого кишечника.

Моторная функция желудка.

Три вида двигательных явлений в желудке: перистальтические, систолические и тонические. Моторная функция желудка обеспечивается работой гладкой мускулатуры. Эта функция способствует перемешиванию, размельчению и продвижению содержимого желудка в двенадцатиперстную кишку.

Перистальтические движения осуществляются за счет сокращения циркулярных мышц желудка. Волна сокращения начинается в области кардиального отдела и распространяется до сфинктера привратника. Перистальтические волны возникают у человека с частотой 3 раза в 1 мин. Систолические сокращения связаны с сокращением мышц антральной части пилорического отдела желудка. Эти движения обеспечивают переход значительной части содержимого желудка в двенадцатиперстную кишку. Тонические сокращения — неперистальтические движения желудка, обусловленные изменением тонуса мышц. Они способствуют перемещению содержимого желудка. При пустом желудке возникают периодические его сокращения (голодная моторика), которые сменяются состоянием (периодом) покоя. Этот вид сокращения мыщц желудка связан с ощущением голода. У человека продолжительность периодов работы желудка составляет 20 - 50 мин, периоды покоя длятся 45—90 мин и более. Периодические сокращения желудка прекращаются с началом еды и пищеварения. Кроме указанных видов сокращения в желудке различают антиперистальтику, которая наблюдается при акте рвоты.

Регуляция моторной функции желудка. Осуществляется за счет нейрогуморальных механизмов. Блуждающие нервы возбуждают моторную активность желудка, симпатические в большинстве случаев угнетают. На моторику желудка оказывают влияние гуморальные факторы. Возбуждают сокращение гладкой мускулатуры желудка инсулин, гастрин, гистамин, ионы калия, тормозят — энтерогастрон, холецистокинин-панкреозимин, адреналин, норадреналин.

Эвакуация пищевой кашицы в двенадцатиперстную кишку

Содержимое желудка переходит в двенадцатиперстную кишку только тогда, когда его консистенция становится жидкой или полужидкой. Пища находится в желудке от 6 до 10 ч. Сокращения пилорического отдела желудка способствуют передвижению пищевой кашицы к сфинктеру привратника. Возбуждение его рецепторов через блуждающие нервы приводит к расслаблению и открытию сфинктера.

Раздражение же содержимым желудка рецепторов слизистой оболочки двенадцатиперстной кишки обеспечивает возбуждение симпатических нервов. Рефлекторный механизм вызывает закрытие сфинктера привратника за счет сокращения его кольцевых мышц. Сфинктер будет закрыт до тех пор, пока химус волной перистальтики не продвинется дальше по двенадцатиперстной кишке.

Регуляция деятельности сфинктера привратника осуществляется также хлористоводородной кислотой. Открытие сфинктера привратника происходит вследствие раздражения слизистой оболочки пилорической части желудка хлористоводородной кислотой желудочного сока. Часть пищи в это время переходит в двенадцатиперстную кишку и реакция ее содержимого становится кислой вместо щелочной. Кислота, действуя на слизистую оболочку двенадцатиперстной кишки, вызывает рефлекторное сокращение мускулатуры привратника, то есть закрытие сфинктера и, следовательно, прекращение дальнейшего перехода пищевой кашицы из желудка в кишечник

ПИЩЕВАРЕНИЕ В ДВЕНАДЦАТИПЕРСТНОЙ КИШКЕ

Двенадцатиперстная кишка является центральным отделом пищеварительного канала. Здесь начинается второй этап пищеварения, который имеет ряд особенностей. В процессе пищеварения в двенадцатиперстной кишке участвуют панкреатический (поджелудочный) сок, желчь и кишечный сок, которые имеют выраженную щелочную реакцию. В состав поджелудочного и кишечного соков входят ферменты, расщепляющие белки, жиры, углеводы.

Состав, свойства и значение панкреатического сока.

У взрослого человека за сутки выделяется 1,5-2 л поджелудочного сока.

В состав поджелудочного сока входят органические (протеолитические, амилолитические, липолитические ферменты) и неорганические вещества. К протеолитическим ферментам панкреатического сока относятся: трипсин, химотрипсин, панкреатопептид (эластаза) и карбоксипептидазы. Под их влиянием нативные белки и продукты их распада (высокомолекулярные полипептиды) расщепляются до низкомолекулярных полипептидов и аминокислот. В панкреатическом соке содержатся также ингибиторы протеолитических ферментов. Они имеют существенное значение в предохранении поджелудочной железы от самопереваривания (аутолиз).

К амилолитическим ферментам поджелудочного сока относятсяамилаза, расщепляющая углеводы до мальтозы,мальтаза, превращающая солодовый сахар (мальто зу) в глюкозу, лактаза, расщепляющая молочный сахар (лактозу) до моносахаридов. В состав липолитических ферментов входят липаза и фосфолипаза А. Липаза расщепляет жиры до глицерина и жирных кислот.Фосфолипаза А действует на продукты расщепления жиров.

Регуляция секреции поджелудочной железы

Секреция поджелудочного сока протекает в три фазы: сложнорефлекторную (мозговую), желудочную и кишечную.

Сложнорефлекторная фаза осуществляется на основе условных и безусловных рефлексов.

Вид пищи, ее запах, звуковые раздражения, связанные с приготовлением пищи, разговор о вкусной пище или воспоминания о ней при наличии аппетита приводят к отделению поджелудочного сока. В этом случае выделение сока происходит под влиянием нервных импульсов, идущих от коры большого мозга к поджелудочной железе, то естьусловнорефлекторно. Безусловнорефлекторная секреция поджелудочного сока происходит при раздражении пищей рецепторов ротовой полости и глотки. Первая фаза секреции поджелудочного сока непродолжительная, сока выделяется мало, но он содержит значительное количество органических веществ, в том числе ферментов.

Желудочная фаза секреции панкреатического сока связана с раздражением рецепторов желудка поступившей пищей. Нервные импульсы от рецепторов желудка по афферентным волокнам блуждающего нерва поступают в продолговатый мозг к ядрам блуждающих нервов. Под влиянием нервных импульсов нейроны ядер блуждающих нервов возбуждаются. Это возбуждение по эфферентным секреторным волокнам блуждающего нерва передается к поджелудочной железе и вызывает отделение панкреатического сока. Желудочная фаза секреции панкреатического сока обеспечивается также гормоном гастрин

Наши рекомендации