Частичное голодание. Последствия недостаточности белков, жиров и углеводов для организма. Белково-калорийная недостаточность. Особенности проявлений белковой недостаточности у детей.
Частичное голодание
При недостатке в пище углеводов основные нарушения связаны с усилением кетогенеза в печени, куда транспортируются жиры вследствие ее обеднения гликогеном. Недостаточное поступление в организм жиров в энергетическом отношении может быть восполнено углеводами и белками. Однако для обеспечения пластических процессов необходимо вводить хотя бы минимальное количество жира (5 — 6 г), которое содержит незаменимые жирные кислоты — арахидоновую, линолевую и линоленовую. Следует также учитывать, что с жирами поступают жирорастворимые витамины и поэтому жировое голодание неотделимо от витаминного.
Белковое голодание наступает в тех случаях, когда количество белков, поступающих с пищей, не обеспечивает в организме азотистое равновесие. Закон изодинамии Рубнера, устанавливающий зависимость интенсивности обмена от величины поверхности животного, в отношении белков неприменим. Для обеспечения пластических процессов необходимо вводить белки. Потребность в белках непостоянна и зависит от физиологического состояния организма, а также от качества вводимых белков.
При отсутствии даже одной из незаменимых аминокислот (аргинина, гистидина, лейцина, изолейцина, лизина, триптофана, треонина, фенилаланина, метионина, валина) в пище азотистый баланс становится отрицательным.
Длительное недоедание с преимущественным недостатком в пище белков приводит к белково-калорийной недостаточности. Она была широко распространена во время блокады в Ленинграде, где получила название алиментарной дистрофии. Заболевание начиналось при снижении энергетической ценности пищи на 50%. Недостаток полноценного белка, холод, физическое переутомление и нервно-психологическое перенапряжение — вот основные этиологические факторы алиментарной дистрофии.
В тропических и полутропических странах Африки, Индии, Центральной и Южной Америки этот патологический процесс получил название алиментарного маразма и квашиоркора. В этих условиях хроническая белково-калорийная недостаточность усугубляется влиянием неблагоприятных природных условий (сильная инсоляция, высокая температура, влажность), тяжелого физического труда, инфекционных заболеваний, особенно поражающих желудочно-кишечный тракт.
В развитии алиментарного маразма имеется длительный период "сбалансированного голодания", когда гомеостаз поддерживается за счет уменьшения энергетических затрат и снижения основного обмена на 15 — 20 и даже 30%. Однако необходимость выполнения физической работы не может компенсироваться калорийностью пищи и тогда расходуются собственные запасы организма. Снижаются содержание сахара, холестерина и нейтрального жира в крови. Гипопротеинемия приводит к отекам.
Развиваются асцит, анемия, брадикардия, гипотония, нарушается секреторная и моторная деятельность желудочно-кишечного тракта. Постепенно наступает дистрофия органов и тканей.
Нарушение синтеза гормонов выражается в различных эндокринопатиях. Появляются симптомы микседемы, гипофизарной кахексии, гипогонадизма, со стороны нервной системы при алиментарном маразме могут наблюдаться явления паркинсонизма, снижение памяти; возможен распад личности, изменения морального облика. Снижается устойчивость к инфекционным заболеваниям.
Алиментарный маразм у детей, у которых с возрастом растет потребность в белках, развивается быстрее, чем у взрослых и нередко является непосредственной причиной гибели. Дети при белково-калорийной недостаточности отстают в росте и психическом развитии, у них обнаруживается депигментация волос, кожи, мышечное истощение, гепатомегалия, отеки. Отягощает развитие заболевания гиповитаминоз А, Д, В.
Особенно пагубное влияние оказывает такое голодание на развитие нервной системы у детей в возрасте 6 мес — 3 года, когда интенсивно растут нервные клетки, осуществляется миелинизация и гликогенез, устанавливаются нервные связи.
Белковая недостаточность у детей при условии достаточной калорийности пищи приводит к заболеванию, которое получило название квашиоркор ("красный мальчик").
Дефицит незаменимых аминокислот, а также витаминов приводит к развитию явлений, характерных для пеллагры, бери-бери.
Длительная белковая недостаточность сопровождается угнетением синтеза нуклеопротеидов, белков, снижением активности ферментов. Это ведет к уменьшению числа клеток в органах, развитию атрофических процессов в костном мозге, органах пищеварительной системы. Замедляется рост и развитие костей. Нарушается всасывание витаминов и железа в пищевом канале. Создаются условия для развития анемии, снижается основной обмен.
Нарушение кератизации кожного эпидермиса и интенсивное шелушение кожи дало повод для названия "красный мальчик". Нередко развитие жировой инфильтрации печени. Поджелудочная железа подвергается гиалинозу и фиброзу, в связи с чем снижается образование пищеварительных ферментов, иногда развивается сахарный диабет. Дистрофические изменения распространяются на почки, сердце. Спасти ребенка может только рациональное питание.
Минеральное голодание в чистой форме можно наблюдать лишь в экспериментальных условиях. При недостаточном поступлении в организм натрия хлорида у животных теряется аппетит, расстраиваются секреторные процессы, нарушаются синтез белков, а также функции печени, пищевого канала, почек.
Снижается осмотическое давление крови, повышается поступление воды в клетки, падает артериальное давление, нарушается сердечная деятельность, развивается мышечная слабость.
При недостаточном поступлении в организм калия снижается возбудимость нервных и мышечных клеток, падает сосудистый тонус, появляется аритмия. Пониженное содержание в пище кальция может привести к тетании; железа — к развитию гипохромной анемии, тканевой гипоксии; кобальта — замедлению созревания нормобластов и выходу зрелых эритроцитов в периферическую кровь; фтора — нарушению костеобразования и развитию кариеса; йода — развитию эндемического зоба и гипотиреоза.
Водное голодание вызывает наиболее тяжелые изменения в организме. Уже через 1 — 2 дня животное отказывается принимать пищу и переходит на абсолютное голодание. В организме активизируются катаболические процессы, накапливаются продукты распада, развивается интоксикация. Животные погибают значительно быстрее, чем при полном голодании.
Одной из форм качественного голодания является витаминная недостаточность (авитаминозы, гиповитаминозы), которая может быть экзогенной (вследствие отсутствия или низкого содержания витаминов в пище) или эндогенной.
Экзогенная витаминная недостаточность может возникать в связи с сезонными изменениями содержания витаминов в пище, неправильным хранением и обработкой пищевых продуктов, в связи с повышением потребности в витаминах при неизменном содержании их в пище. Так, в холодное время года организм может испытывать недостаток тиамина. В условиях Севера скорее развивается недостаточность ретинола, кальциферола и витаминов группы В. Интенсивная физическая работа повышает потребность в витаминах группы В. При обильном потоотделении (горячие цехи) теряются водорастворимые витамины. Потребность в витаминах увеличивается в связи с беременностью и лактацией.
Эндогенная витаминная недостаточность возникает, например, при нарушении всасывания витаминов в пищевом канале. Это может быть связано с недостаточностью кишечной липазы или желчи, с нарушением активного транспорта витаминов через кишечную стенку. Витаминное голодание возникает в органах-мишенях, при нарушении превращения витамина в активную форму, в коферменты. Определенную роль при этом играет и нарушение синтеза апоферментов, поскольку витамины, взаимодействуя с апоферментами, проявляют свое специфическое действие. Витаминная недостаточность может развиваться также при опухолевом росте, лейкозах, некоторых энзимопатиях, эндокринных заболеваниях (например, при тиреотоксикозе). К таким же последствиям приводит поступление с пищей антагонистов витаминов (антивитаминов), например, содержащегося в сыром яичном белке гликопротеида авидина — антагониста биотина (витамина Н).
Возникновение витаминной недостаточности при одной и той же степени обеспеченности организма витаминами зависит от синергизма и антагонизма в действии некоторых витаминов. Так, синергизм, задерживающий витаминную недостаточность, имеется между аскорбиновой кислотой и тиамином. Антагонистами являются токоферол и пиридоксин.
Проявления разных видов витаминной недостаточности имеют общие черты. Многие водорастворимые витамины являются компонентами различных коферментов, поэтому дефицит витаминов сопровождается разнообразными нарушениями в обмене веществ. Отмечаются снижение массы тела, иммунологической реактивности, мышечная слабость, задержка роста. Нередко при этом наблюдаются поражения нервной (авитаминозы В1, В6, В12, РР), эндокринной (недостаток витамина В1, В5, Е) систем, пищевого канала (дефицит витаминов В1, РР). Вместе с тем преимущественный недостаток какого-либо витамина сопровождается специфическими для этого витамина нарушениями.
49. Витаминное голодание. Причины гиповитаминозов. Проявления и последствия витаминной недостаточности: жиро- (А, Д, Е, К) и водорастворимых ( B1, B2, B6, B12, PP, C) витаминов. Гипервитаминозы.
Витамины – это низкомолекулярные органические соединения, жизненно необходимые для осуществления нормального обмена веществ в малых количествах, не способные синтезироваться организмом человека. Большинство витаминов в виде коферментов входят в состав ферментных систем, участвуют в белковом, жировом, углеводном и других видах обмена. Некоторые витамины (например, витамин Д) превращается в организме в гормоноподобные вещества и участвует в регуляции биохимических процессов. Каждый витамин выполняет свою конкретную функцию в организме. В результате длительного отсутствия или недостатка в пищевом рационе тех или иных витаминов возникают патологические процессы, называемые гиповитаминозами.
Гиповитаминозы могут быть экзогенными и эндогенными. В первом случае гиповитаминоз развивается в результате недостаточности того или иного витамина в пище. Эндогенные гиповитаминозы возникают в результате нарушения всасывания витаминов в желудочно-кишечном тракте или же при патологии усвоения и использования витаминов клетками и тканями организма, а также при повышенной потребности организма (интенсивная мышечная работа, обильное потение, климатические условия и условия труда и т.д.).
Все витамины делят на два класса водорастворимые и жирорастворимые. К водорастворимым относятся следующие витамины: В1, В2, В6, В12, РР, С, фолиевая, пантотеновая кислоты. К числу жирорастворимых относятся А, Е, Д, К.
Водорастворимые витамины
Витамин В1
Витамин В1 синтезируется зелеными растениями и микроорганизмами. Животные и человек этот витамин не синтезируют, поэтому полностью зависят от его поступления из внешней среды. Содержится витамин в дрожжах, в зародышевых оболочках злаков, а, следовательно, в хлебе из муки простого помола. Переработка растительного сырья (удаление отрубей) всегда сопровождается резким снижением уровня витамина в полученном продукте. Шлифованный рис, например, совсем не содержит витамина.
Введенный с пищей витамин В1 всасывается в тонком кишечнике и уже в кишечной стенке, а также в печени и почках фосфорилируется и превращается в дифосфотиамин (кокарбоксилазу).
Особенно важную роль витамин В1 играет в углеводном обмене. Витамин в виде кофермента входит в состав фермента пируватдегидрогеназы, которая осуществляет окислительное декарбоксилирование пировиноградной кислоты, превращая ее в ацетил-КоА. При недостатке витамина В1 в организме накапливаются пируват и лактат, уменьшается содержание Ацетил-КоА, замедляется цикл Кребса, образование ацетилхолина. Большая концентрация пирувата токсически действует на ЦНС. Особого внимания заслуживает значение витамина В1 для функционального состояния ЦНС и мышечной деятельности. Это становится понятным, если учесть, что ЦНС почти всю свою энергию черпает из углеводов. Нарушение В1 витаминного баланса лишает ЦНС возможности эффективно использовать глюкозу при одновременном воздействии на нее промежуточных продуктов обмена веществ, токсически влияющих на мозг. Витамин принимает участие в передаче возбуждения с нерва на исполнительный орган. Он угнетает холинестеразу и тем самым усиливает действие ацетилхолина.
Другая коферментная форма витамина В1 входит в состав фермента транскетолазы, участвующей в пентозофосфатном пути расщепления углеводов, одним из конечных продуктов которого является рибоза, необходимая для синтеза нуклеиновых кислот. Нарушение образования ацетил-КоА из пирувата приводит к снижению выработки энергии в цикле Кребса.
При недостатке тиамина в пище развивается полиневрит (бери-бери), главными признаками которого являются параличи, затем контрактуры конечностей, особенно кистей рук. Морфологически обнаруживается дегенерация нервных волокон, миелиновых оболочек и задних столбов спинного мозга.
Кроме того, отмечаются апатия, понижение аппетита, рвота, диспепсия, ригидность мышц, исчезновение рефлексов (подошвенных, коленных), нарушение памяти.
Авитаминоз В1 сопровождается угнетением синтеза липидов и стероидов, в результате чего может развиться гипофункция ряда желез внутренней секреции, а также задержка биосинтеза белков и нуклеиновых кислот. Азотистый баланс становится отрицательным, масса тела снижается.
Витамин В2 (рибофлавин)
Рибофлавин широко распространен в природе. Богатым источником рибофлавина являются пивные дрожжи и молочные продукты. Довольно много витамина также в яйцах, особенно в желтке. Рибофлавин всасывается в тонком кишечнике, подвергается фосфорилированию с образованием флавинадениндинуклеотида (ФАД).
Все изученные флавопротеиды являются окислительно-восстановительными ферментами и относятся к группе оксидоредуктаз, выполняя функции транспорта водорода в процессе тканевого дыхания. Одни из них являются акцепторами водорода от восстановленных пиридиннуклеотидных коферментов (НАД и НАДФ) и переносят его далее на соответствующие акцепторы. Последние отрывают от него электроны и переносят их через систему цитохромов на молекулярный кислород.
Ряд ферментов, содержащих рибофлавин, участвуют в обмене других витаминов, в частности пантотеновой кислоты, холина, пиридоксина, фолиевой и оротовой кислот. Рибофлавин вместе с пиридоксином участвуют в обмене триптофана в организме.
Проявление недостаточности витамина В2 связано с понижением интенсивности тканевого дыхания, а также с нарушением межуточного обмена углеводов и белков. Полное отсутствие рибофлавина в пище вызывает острый арибофлавиноз. Он характеризуется внезапным развитием коматозного состояния и быстро наступающей гибелью. При частичной недостаточности рибофлавина развивается хроническое заболевание, характеризующееся нарушением роста, возникновением кожных поражений в виде облысения и дерматитов с шелушением кожи и проявлением эрозии, поражением глаз в виде васкуляризации роговой оболочки, кератитов, в некоторых случаях – катаракты.
Арибофлавиноз у человека проявляется раньше всего поражением языка и губ: язык пурпурно-красного цвета, шероховатый, губы болезненные, с мокнущими трещинами в углах. На волосистой части головы, мошонке и других частях тела могут развиваться дерматиты. Отмечаются также глосситы, сопровождающиеся чувством жжения в языке. Характерны также специфические поражения глаз. Одним из постоянных симптомов арибофлавиноза считается васкуляризация роговой оболочки, хотя она может развиваться не только при недостаточности рибофлавина. Субъективно при арибофлавинозе отмечается светобоязнь. В тяжелых случаях описаны конъюктивиты и кератиты.
Витамин В6 (пиридоксин)
Витамин В6 имеет широкое распространение в природе. Он найден у различных микроорганизмов, в тканях животных и растений. Наиболее богатым источником витамина В6 являются пивные дрожжи, мясо, рыба, молоко, цельное зерно злаков. Относительно высокое количество витамина найдено в горохе, бобах. У животных много витамина В6 находятся в тканях печени, сердца, почек. Всасывание пиридоксина в желудочно-кишечном тракте осуществляется преимущественно в толстой кишке в результате пассивной диффузии. Из циркулирующей крови свободный пиридоксин быстро проникает в ткани, где подвергается окислению, а затем фосфорилированию и превращается в пиридоксалевые коферменты, которые, соединяясь в клетках со специфическим протеином, образуют соответствующие ферменты. Они участвуют в трансаминировании и декарбоксилировании аминокислот, в образовании биогенных аминов.
Одну из важных функций в обмене аминокислот пиридоксальфосфат осуществляет в природе синтеза гемма в эритроцитах, принимает участие в синтезе никотиновой кислоты из триптофана, в синтезе КоА, арахидоновой кислоты, которая необходима для роста и развития организма. Основной конечный продукт обмена витамина В6 в организме в организме животных и человека – биологически недеятельная 4-пиридоксиловая кислота, которая выводится с мочой. Пиридоксалевые ферменты присутствуют, главным образом, в тканях с энергетическим обменом веществ – печени, почках, сердце. У теплокровных животных наибольшим резервом витамина В6 является пиридоксальфосфат, входящий в состав фосфорилазы скелетной и сердечной мускулатуры.
Основные нарушения при этом гиповитаминозе проявляются изменения нервной системы (повышение возбудимости, судороги) и пеллагроподоные изменения кожи. Изменения в ЦНС объясняются нарушением обмена глютаминовой кислоты, из которой образуется гамма-аминомаслянная кислота (ГАМК), оказывающая тормозящее влияние в нейронах коры головного мозга. При снижении уровня ГАМК возникают судороги. Отсутствие фосфопиридоксаля нарушает превращения триптофана в никотиновую кислоту, что приводит к развитию пеллагры накоплению ксантуреновой кислоты, которая препятствует образованию инсулина, способствует развитию сахарного диабета. Кроме того, длительный гиповитаминоз может привести к развитию микроцитарной гипохромной анемии (вследствие нарушения синтеза гемма), нарушению умственной деятельности, потере аппетита, остановке роста, появлению тошноты.
Витамин В12 (цианокобаламин)
В основном витамин В12 попадает в организм человека с пищевыми продуктами животного происхождения, поступившими с пищей. Витамин В12 в желудке вступает в связь с «внутренним фактором» Кастла, относящимся к мукопротеидам. У человека внутренний фактор (ВФ) образуется париетальными клетками слизистой оболочки фундального отдела желудка. ВФ связывает витамин В12 и защищает его от утилизацией кишечной флорой, облегает адсорбцию и всасывание. В процессе адсорбции комплекс витамин В12-ВФ связывается со специфическими рецепторами подвздошной кишки. Пройдя эпителиальный барьер кишечника, витамин В12 попадает в ток крови, где он связывается с белками плазмы, транскобаламинами-1,-2,-3. основным местом депонирования витамина в организме является печень, где может содержаться его от 2 до 2,5 мг. Этого количества цианокоболамина, даже при полном отсутствии поступления, хватит на 4-5 лет для поддержания эритробластического кроветворения. Витамин В12 обладает чрезвычайно многообразным действием в организме, катализируя реакции белкового, жирового и углеводного обменов. Из всех известных в настоящее время кобаламидных ферментов только два обнаружены у человека и животных:
Метилкобаламин в печени переводит фолиевую кислоту в активную форму тетрагидрофолиевую, обеспечивающую синтез пуриновых и пиримидиновых оснований, входящих в структуру ДНК. Отсутствие витамина В12 приводит к нарушению выработки ДНК. Недостаток ДНК нарушает деление клеток. Прежде всего, страдают активно размножающиеся клетки кроветворной системы, и тип кроветворения переходит на мегалобластический. Развивается гиперхромная анемия.
Дезоксиаденилкобаламин – участвует в регуляции жирового обмена. Он способствует образованию янтарной кислоты из метилмалоновой. При дефиците витамина В12 в организме накапливается токсическая метилмалоновая кислота, нарушается синтез жирных кислот и миелина, что ведет к возникновению неврологических симптомов.
Различают 2 формы эндогенного В12-гиповитаминоза ГАСТРОГЕННЫЙ, причиной которого является отсутствие или недостаточность внутреннего фактора Кастла, что приводит к нарушению использования пищевого витамина В12 и ЭНТЕРОГЕННЫЙ гиповитаминоз вследствие нарушения всасывания витамина В12 в кишечнике (наличие широкого лентеца, значительное разрушение витамина патологической кишечной микрофлорой).
Витамин РР (ниацин, никотиновая кислота)
В природе витамин РР встречается в двух формах – в виде никотиновой кислоты (НК) и никотинамида (НАМ), которые довольно широко распространены в растительных и , особенно, животных продуктах. Из растительных продуктов богаче всего сухие пивные, пекарские дрожжи, гречневая крупа, пшено. Очень богаты НК животные продукты: мясо домашней птицы, баранина, телятина, печень, почки и сердце. Никотиновая кислота – один из самых стойких витаминов в отношении хранения и кулинарной обработки. Поступающие с пищей НК и НАМ всасываются в фундальной части желудка и на всем протяжении тонкого кишечника. В условиях острого дефицита НК и НАМ ткани могут синтезировать НАМ из триптофана. Почти весь имеющийся в тканях и жидкостях животных и человека витамин РР включен в структуру коферментов НАД и НАДФ, которые вместе с апоферментами катализируют окислительно-восстановительные реакции клеточного обмена, НАД и НАДФ находятся во всех клетках организма животных и растений.
Наиболее важная функция никотинамидных коферментов – это участие в переносе водорода с окисляемых субстратов на флавиновые ферменты в процессе клеточного дыхания. Таким образом, коферментные функции НАД и НАДФ проявляются главным образом в окислительно-восстановительных реакциях, в обратимом присоединении атома водорода и образовании АТФ. При недостаточности НК развивается пеллагра, главными признаками которой являются дерматит, поражение желудочно-кишечного тракта (диарея) и слабоумие (деменция).
Клиническая картина пеллагры включает следующие явления: вялость, апатия, слабость в ногах, быстрая утомляемость, головокружение, раздражительность, бессонница, бледность и сухость кожи, снижение аппетита, падение веса, понижение сопротивляемости организма к инфекциям и понижение трудоспособности. Ранними клиническими симптомами пеллагры являются понос и изменения в полости рта. Весьма характерны изменения языка. Вначале края и кончик языка ярко-красные. Постепенно краснота переходит на весь язык, и он выглядит блестящим, как бы лакированным. Наряду с этим наблюдается явления со стороны кишечника: метеоризм, урчание, поносы. Через некоторое время после начала поноса больные замечают появление на коже симметричных красных пятен (пеллагрическая эритема). Она чаще располагается на открытых частях тела: тыле кистей рук, стоп, шее, лице, особенно на носу, щеках, лбу и вокруг рта. У детей эритема лица протекает с острым отекам и резкой болезненностью. При неосложненной эритеме через несколько дней начинается отрубевидное, желточно-коричневое шелушение. При развитии заболевания наблюдаются глубокие нарушения функции центральной и периферической нервной системы: шум и звон в ушах, нарушение вкуса, сильный зуд, головные боли, боли в позвоночнике, конечностях, ощущение опоясывания, онемения, бегания мурашек, поверхностные и глубокие расстройства тактильной и болевой чувствительности, неуверенная походка, тяжелая адинамия, дрожание головы и конечностей, парезы, мышечная атрофия, неподвижность и скованность. Самое тяжелое в клинической картине пеллагры – нарушение психики. Лечение пеллагры дает тем больший эффект, чем раньше оно начато. Специфическим методом является назначение никотиновой кислоты или ее амида.
Витамин С (аскорбиновая кислота)
Аскорбиновая кислота является одним из наиболее распространенных в природе витаминов. Источником витамина С являются шиповник, черная смородина, капуста, помидоры, цитрусовые, картофель и др. У человека, обезьян, морских свинок в организме аскорбиновая кислота не синтезируется. Всасывание аскорбиновой кислоты осуществляется системой кровеносных капилляров в тонком кишечнике, как путем простой диффузии, так и с участием переносчика в присутствии ионов натрия. Для поступления в клетки необходим переход аскорбиновой кислоты в дегидроаскорбиновую, которая легко диффундирует в клетки без затраты энергии. Параллельно с окислением аскорбиновой кислоты в организме происходит восстановление дегидроаскорбиновой кислоты в аскорбиновую. Это происходит в эритроцитах под влиянием фермента дегидроаскорбинредуктазы при участии восстановленной формы глютатиона. Не все ткани одинаково усваивают аскорбиновую кислоту. Очень много ее поступает в ЦНС, лейкоциты, надпочечники, сердечную мышцу и т.п. Она необходима для нормального синтеза и обмена гормонов надпочечников и адекватного функционирования симпатико-адреналовой системы. Основная роль аскорбиновой кислоты – транспорт электронов и участие в окислительно-восстановительных процессах. Витамин С в эритроцитах повышает активность некоторых ферментов, катализирующих реакции гликолиза: гексокиназы, фосфогексоизомеразы и фосфоглюкомутазы. Кроме того, аскорбиновая кислота необходима для образования коллагена из проколагена, в котором содержится очень большое количество оксипролина. В настоящее время выяснено, что аскорбиновая кислота участвует в гидроксилировании пролина-коллагена, укрепляет базальную мембрану сосудов, этим она способствует поддержанию нормальной проницаемости капилляров. Витамин С оказывает антитоксическое действие при токсических поражениях печени, участвует в детоксикации гистамина, в синтезе интерферона, облегчает течение простудных заболеваний, оказывает антитоксическое действие при токсических поражениях печени, участвует в детоксикации гистамина. В синтезе интерферона, облегчает течение простудных заболеваний, так как способствует усвоению железа в желудочно-кишечном тракте; оказывает антисклеротическое действие, так как снижает биосинтез и увеличивает распад холестерина.
Основные симптомы недостаточности витамина С: повышенная ломкость кровеносных капилляров, общая слабость, апатия, повышенная утомляемость, снижение аппетита, задержка роста, повышенная восприимчивость к инфекциям, бледность десен, их отечность, разрыхленность, кровоточивость при чистке зубов. В далеко зашедших случаях цинги нарастают влияния гингивита, расшатываются и выпадают зубы. По мере развития скорбута обнаруживаются красновато-синеватые пятна на ягодицах, на голенях подкожные кровоизлияния. В результате кровоизлияний в толщу мышц наблюдается их болезненность, ригидность. В тяжелых случаях поражаются внутренние органы (кровохарканье, неспецифические пневмонии, обострение туберкулезного процесса). Развиваются сердцебиение, одышка, происходит ослабление сердечного толчка, тоны сердца глухие. У детей раннего возраста скорбут проявляется в особой форме – в виде болезни Маллера – Барлова. Особенности заболевания: болезненность конечностей при движениях, припухание диафизов, беспокойство ребенка, длительный субфебрилитет. В тяжелых случаях могут проявляться кровоизлияния в глазницы, веки, черепа. На коже мелкоточечная петехиальная сыпь. Нарушается гемопоэз: понижается количество гемоглобина и эритроцитов, не редко тромбоцитоз. Развивается стойкая лейкоцитопения.
Витамин Р (биофлавоноиды)
Витамин Р содержится в цитрусовых(особенно в кожуре), черной смородине, в листьях чая, черники и др. вещества, обладающие Р-витаминной активностью, называются БИОФЛАВОНОИДАМИ. Витамин Р образует с аскорбиновой кислотой окислительно-восстановительную систему, способствуя при этом реализации физиологического действия витамина С. Основной функцией витамина Р является регуляция стойкости и проницаемости сосудистой стенки. В настоящее время препараты витамина нашли широкое применение в клинической практике не только для лечения авитаминозов, но и при многих других заболеваниях, сопровождающихся повышением сосудистой проницаемости и понижением их резистентности.
Биофлавиноиды и аскорбиновая кислота оказывают влияние на сосудистую проницаемость, воздействие на систему гиалуроновая кислота-гиалуронидаза. Ингибирующее действие биофлавиноиды оказывают на гиалуронидазу, на сукцинатдегидрогеназу и другие ферменты. Биофлавоноиды предохраняют аскорбиновую кислоту от окисления, а также восстанавливают дегидроаскорбиновую кислоту в аскорбиновую при участии глутатиона. Приведенные данные позволяют говорить о наличии связи в механизме физиологического действия биофлавиноидов и аскорбиновой кислоты. Характер этой связи заключается в способности фловоноидных веществ усиливать биологическое действие аскорбиновой кислоты, по-видимому, благодаря их совместному участию в тканевом дыхании.
Основными показателями Р-витаминной недостаточности до последнего времени считаются пониженная резистентность и повышенная проницаемость капилляров. Пониженная резистентность или хрупкость, капилляров обнаруживается при механическом воздействии на них, которое может вызвать разрыв капиллярной стенки и образование точечных кровоизлияний – петехий. Понятие «повышенная проницаемость капилляров» означает нарушение структуры капиллярной стенки, в результате чего она становится проницаемой для более крупных, чем в норме, частиц, например белковых молекул или эритроцитов. Для определения резистентности капилляров у человека принята баночная проба Нестерова.
Витамин В3 (Пантотеновая кислота)
Пантотеновая кислота широко распространена в природе. Она синтезируется зелеными растениями и микроорганизмами: дрожжами, многими бактериями, в том числе кишечной флорой млекопитающих, грибками. Особенно богаты пантотеновой кислотой печень животных, почки. Яичный желток, икра, мясо. Специфическая функция пантотеновой кислоты в обмене веществ состоит в том, что она является незаменимой составной частью кофермента А. этот кофермент играет фундаментальную роль в обменен веществ, принимая участие в осуществлении таких биохимических процессов, как окисление и биосинтез жирных кислот, окислительное декарбоксилирование кетокислот, в цикле лимонной кислоты, биосинтезе стероидов, нейтральных жиров, фосфатидов, порфиринов, ацетилхолина и др. Во всех этих процессах кофермент А функционирует в роли промежуточного акцептора и переносчика различных кислотных остатков (ацилов), образуя так называемые ацилпроизводные кофермента А (ацил-КоА). Причины гиповитаминоза: подавление микробного синтеза или повышенная потребность в пантотеновой кислоте (холод, физические напряжения, облучения, инфекционные заболевания и др.)
К основным проявлениям длительной недостаточности пантотеновой кислоты у человека и животных могут быть отнесены следующие: общее угнетение, вялость, анемия, замедление роста, потеря веса. К этому периоду отмечается развитие синдрома жжения ног (покалывание, онемение в пальцах ног, затем боли принимают жгучий характер), возможно развитие коматозного состояния и , в далеко зашедших случаях, смерти. Могут быть нарушения со стороны желудочно-кишечного тракта: потеря аппетита, геморрагические гастроэнтериты, колиты, появление язв в кишечнике, профузная диарея, изъязвляющие и некротизирующие глосситы. Развиваются изменения со стороны органов размножения: недоразвитие половых органов, рассасывание зародышей, стерильность, нарушение развития эмбрионов, возникновение уродств – микрофтальмии, гидроцефалии, гидронефрозов, расщепление неба, дефектов кожи, сердечнососудистых аномалий; повреждения надпочечников; геморрагические изменения, атрофия и некроз, нарушение биосинтеза стероидных гормонов; торможение образования антител, с чем может быть связано резкое повышение чувствительности к инфекциям. Со стороны крови может быть нормоцитарная анемия, так как нарушается синтез гемма; со стороны нервной системы – дегенеративные изменения.
Развитие описанных симптомов в той или иной степени обусловлено выпадением в обменен веществ функции кофермента А, концентрация которого в тканях при недостатке пантотеновой кислоты резко снижена. Нарушения со стороны надпочечников, очевидно, обусловлены торможением биосинтеза холестерина и стероидных гормонов из-за недостатка КоА. Изменения со стороны нервной системы могут быть обусловлены нарушением биосинтеза ацетилхолина и фосфолипидов. Существенную роль в развитии симптомов недостаточности пантотеновой кислоты может играть нарушение процессов энергообразования и биосинтеза липидов. Развитие дерматитов может быть связано с нарушением обмена соединительной ткани, в частности, ацетилирования гексозаминов и биосинтеза мукополисахаридов.
Фолиевая кислота.
Фолаты широко распространяются в природе. В тканях млекопитающих и птиц фолаты не образуются. Основным источником фолатов в питании человека являются свежие овощи и зелень: салат, шпинат, капуста, морковь, помидоры, лук. Из продуктов животного происхождения наиболее богаты фолатами печень и почки, яичный желток, сыр. Хотя основными источником фолатов для человека являются фолаты пищи, определенное значение в удовлетворении потребности в этом витамине принадлежит и кишечной микрофлоре.
Всасывание фолиевой кислоты осуществляется главным образом в двенадцатиперстной кишке и проксимальной части тонкого кишечника. Для всасывания фолатов в тонком кишечнике необходим фермент дегидрофолатредуктаза. Всосавшиеся фолаты поступают в печень, где накапливаются и превращаются под влиянием витамина В12 в активные формы (тетрагидрофолат). В теле взрослого содержится около 7-12 мг фолатов, из них в печени приблизительно 50-70% (5-7мг).
Фолиевая кислота метаболически неактивна. Важной химической особенностью является способность ее птеридинового кольца к восстановлению путем присоединения 4 водородных атомов с образованием тетрагидрофолиевой кислоты (ТГФК). Тетрагидрофолат является биологически активной формой фолатов. Точно установлено, что ее коферментные функции непосредственно связаны с переносом одноуглеродных соединений, благодаря чему осуществляется их участие в биосинтезе таких важнейших предшественников нуклеиновых кислот, как пуриновые и пиримидиновые основания, а также участие в обмене ряда аминокислот: серина, гистидина, метионина, триптофана. ТГФК участвуют в биосинтезе подвижной метильной группы и этим объясняется ее липотропное действие и клиническое применение для устранения жировой инфильтрации печени.
Недостаточность фолатов у человека вызывает развитие мегалобластической анемии. Мегалобластическая анемия почти всегда обусловлена недостаточностью фолатов или витамина В12 ,