Тема №1. Медицинская статистика в стоматологической практике. Абсолютные и относительные величины, их графическое изображение. Динамические ряды, виды, анализ.
СТАТИСТИКА – общественная наука, изучающая количественную сторону массовых общественных явлений в неразрывной связи с их качественными особенностями.
Медицинская (санитарная) статистика –одна из отраслей общей статистики. В ее задачи входит:
1. изучение здоровья населения и факторов, определяющих его;
2. анализ, оценка и планирование медицинской помощи;
3. специальные научные исследования.
В медицинской статистике выделяют 3 раздела:
I. Теоретические и методические основы статистики.
II. Статистика здоровья населения (санитарно-демографические, показатели заболеваемости, травматизма, инвалидности, физического развития).
III. Статистика здравоохранения.
Для оценки изучаемых явлений, составляющих статистическую совокупность, в здравоохранении используют статистические величины: абсолютные числа, относительные и средние величины.
ОТНОСИТЕЛЬНЫЕ ВЕЛИЧИНЫ
Абсолютные величины могут характеризовать размер изучаемых явлений и процессов. Большое практическое значение для правильного планирования медицинской помощи населению имеют такие абсолютные величины, как численность населения и его отдельных возрастных и половых групп; численность медицинского персонала и лечебно-профилактических учреждений; количество больничных коек и т.д.
Однако, зная только абсолютные данные, мы не можем раскрыть состав, распространенность явления в данной среде. Поэтому в медицинской статистике для характеристики таких явлений, как заболеваемость, смертность, рождаемость и т.д. абсолютные величины переводятся в относительные:интенсивные, экстенсивные показатели, показатели соотношения и наглядности.
Интенсивный показатель –характеризует частоту (распространенность, интенсивность, уровень) явления в среде, в которой оно происходит и с которой непосредственно органически связано. При вычислении интенсивных показателей необходимо знание 2х статистических совокупностей, одна из которых представляет среду, а вторая – явление. Среда продуцирует это явление. Интенсивный показатель может рассчитываться на 100 (%), 1000 (промилле), на 10000 (продецимилле), на 100000 (просантимилле) в зависимости от распространенности явления. Однако в практике здравоохранения существуют общепринятые положения. Так, общая заболеваемость, рождаемость, смертность, младенческая смертность всегда выражается в промилле (‰), а заболеваемость с временной нетрудоспособностью, летальность, частота осложнений рассчитываются на 100 (%).
Методика вычисления интенсивных показателей выглядит следующим образом:
Показатель структуры (экстенсивный) –характеризуетраспределение явления на составные части, его внутреннюю структуру или отношение частей к целому (удельный вес). При вычислении экстенсивных показателей мы имеем дело только с одной статистической совокупностью и ее составом.Экстенсивный показатель чаще бывает выражен в %, когда за 100 принимается целое явление.
Методика вычисления экстенсивных показателей проста:
В качестве примеров экстенсивных показателей, применяемых в здравоохранении, можно назвать структуру заболеваемости населения; распределение госпитализированных больных по отдельным нозологическим формам, лейкоцитарную формулу и т.д.
Экстенсивными показателями следует пользоваться для характеристики состава совокупности (явления) в данном месте в данное время. Экстенсивные показатели, характеризующие явления, совершаемые в разное время и в различных местностях, сравнивать между собой нельзя, т.к. они не могут характеризовать изменение явления, процесса в динамике.
Показатели наглядности – используются при сравнении однородных явлений, величин. Для этого одну из сравниваемых величин принимают за 100, остальные показываются в виде отношения к этой величине. В показатель наглядности можно преобразовать абсолютные величины, интенсивные показатели, средние величины, представленные как в статике, так и в динамике.
Методика вычисления показателя наглядности:
Показатели соотношения характеризуют отношения между разнородными совокупностями. Примером может служить показатель обеспеченности населения больничными койками, врачебными кадрами, средним медперсоналом.
Для облегчения анализа статистического материала, полученные показатели изображают графически. Под графиками понимают условные изображения числовых величин и их соотношений при помощи различных линий, поверхностей и т.п.
При построении графических изображений необходимо соблюдать правила:
· вид графического изображения выбирается в зависимости от статистической величины;
· график строится в определенном масштабе с указанием единицы измерения статических величин;
· каждое графическое изображение должно иметь четкое, ясное, краткое название, отражающее его содержание, и порядковый номер;
· все элементы диаграммы (фигуры, знаки, окраска, штриховка) должны быть пояснены на самой диаграмме или в условных обозначениях (легенде);
· изображаемые графически величины должны иметь цифровые обозначения на самой диаграмме или в прилагаемой таблице.
В медицинской статистике используются диаграммы, картограммы и картодиаграммы.
Экстенсивные показатели, характеризующие структуру явления, изображают в виде секторной или внутристолбиковой диаграммы.
В секторной диаграмме окружность принимается за 100%, при этом 1% соответствует 3,60 окружности. Затем 3,60 умножают на число процентов каждого показателя и получают размер каждого сектора в градусах. При помощи транспортира на окружности откладывают отрезки (отсчет ведется от 00), соответствующие величине каждого показателя. Найденные точки окружности соединяют центром круга. Отдельные секторы круга изображают составные части изучаемого явления.
Вместо секторной диаграммы можно применить внутристолбиковую диаграмму, в которой ширина и высота столбика берутся произвольно. Высота или ширина принимается за 100% и в соответствующем масштабе пересчитываются экстенсивные показатели (в %), составляющие в сумме 100%.
Интенсивные показатели, показатели соотношения и наглядности изображают в виде четырех основных типов диаграмм: линейной, столбиковой, картограммы и картодиаграммы.
Линейная диаграмма применяются для изображения частоты явления, изменяющегося во времени, т.е. изображения динамики явления (динамика численности населения, рождаемости, заболеваемости, смертности, температурная кривая и т.п.). Основой для построения линейной диаграммы является чаще всего прямоугольная система координат. Например, на оси абсцисс х откладывают равные по масштабу промежутки времени, а по оси ординат у – показатели заболеваемости туберкулезом. В тех случаях, когда на одной диаграмме изображено несколько явлений, линии наносят разного цвета или разной штриховки.
Радиальная диаграмма является частным видом линейной диаграммы, построенной на полярных координатах. Изображает динамику явления за замкнутый цикл времени (сутки, неделю, месяц, год и т.д.). Используется при изучении сезонного характера явления (заболеваемость, рождаемость, смертность).
Столбиковаядиаграмма применяется для иллюстрации однородных, но не связанных между собой интенсивных показателей. Ими изображают статику явления: заболеваемость, смертность, инвалидность и т.д. При построении этого вида диаграммы рисуют столбики, высота которых должна соответствовать величине изображаемых показателей с учетом масштаба. Ширина всех столбиков и расстояние между ними должны быть одинаковыми и произвольными. Столбики на диаграмме могут быть вертикальными и горизонтальными (ленточными).
Картограмма –особая географическая карта, на которой отдельные территории заштрихованы с различной интенсивностью соответственно уровню интенсивного показателя. Каждой группе показателей дается условная штриховка или цвет, при этом степень интенсивности штриховки (или окраски) меняется по мере перехода от низких показателей к высоким.
Картодиаграмма– это сочетание географической карты с диаграммой, чаще всего столбиковой: столбики различной величины - соответственно показателю - рисуют на определенных территориях.
ДИНАМИЧЕСКИЕ РЯДЫ
Динамический ряд –это совокупность однородных статистических величин, показывающих изменение какого-либо явления во времени.
Величины, составляющие динамический ряд, называются уровнями ряда.Уровни динамического ряда могут быть представлены: абсолютными, относительными и средними величинами.
Динамический ряд, составленный из абсолютных величин, называется простым. Динамический ряд, составленный из средних или относительных величин, называется сложным или производным.Простые динамические ряды являются исходными для построения сложных рядов.
Простые динамические ряды бывают двух видов:
1. Моментныйдинамический ряд состоит из величин, характеризующих размеры явления на какой-то определенный момент (дату). Например, каждый уровень может характеризовать численность населения, численность врачей, число коек на конец года, месяца, декады и т.д. Уровни моментного ряда не могут дробиться.
2. Интервальныйдинамический ряд состоит из величин, характеризующих какие-либо итоги за определенный интервал времени. Например, каждый уровень такого ряда может характеризовать число родившихся, заболевших, умерших за какой-то год, месяц, декаду, неделю и т.д. То есть это данные, которые накапливаются за тот или иной промежуток времени. Выбор величины интервала (год, месяц, неделя, день и т.д.) зависит от изменчивости изучаемого явления (рождаемость, смертность, заболеваемость, средняя длительность лечения и т.д.). Чем медленнее изменяется явление во времени, тем крупнее интервал. Интервальный динамический ряд в отличие от моментного можно разделить на более дробные периоды или, напротив, укрупнить интервалы.
Анализ динамического ряда
Чтобы проанализировать динамический ряд нужно изобразить его графически и вычислить ряд показателей, которые будут свидетельствовать о тенденциях изучаемого явления в динамике:
· Абсолютный прирост (убыль) – разность между последующим и предыдущим уровнем. Измеряется в тех же единицах, в которых представлены уровни ряда.
· Показатель роста (убыли) – отношение каждого последующего уровня к предыдущему, принятому за 100%. Он показывает сколько % от предыдущего уровня составляет последующий уровень.
· Темп прироста (убыли) – отношение абсолютного прироста (убыли) каждого последующего уровня к предыдущему уровню, принятому за 100%. Он показывает на сколько % увеличился (снизился) последующий уровень по сравнению с предыдущим и поэтому может быть рассчитан по формуле:
темп прироста = темп роста – 100%
· Показатель наглядности – отношение каждого уровня ряда к одному из них (чаще начальному) принятому за 100%.