Регуляция функций желез внутренней секреции
Регуляция деятельности желез внутренней секреции осуществляется нервными и гуморальными факторами. Нейроэндокринные зоны гипоталамуса, эпифиз, мозговое вещество надпочечников и другие участки хромаффинной ткани регулируются непосредственно нервными механизмами. В большинстве случаев нервные волокна, подходящие к железам внутренней секреции, регулируют не секреторные клетки, а тонус кровеносных сосудов, от которых зависит кровоснабжение и функциональная активность желез. Основную роль в физиологических механизмах регуляции играют нейрогормональные и гормональные механизмы, а также прямые влияния на эндокринные железы тех веществ, концентрацию которых регулирует данный гормон. Регулирующее влияние ЦНС на деятельность эндокринных желез осуществляется через гипоталамус. Гипоталамус получает по афферентным путям мозга сигналы из внешней и внутренней среды. Нейросекреторные клетки гипоталамуса трансформируют афферентные нервные стимулы в гуморальные факторы, продуцируя рилизинг-гормоны. В свою очередь, тропные гормоны аденогипофиза регулируют активность ряда других периферических желез внутренней секреции (кора надпочечников, щитовидная железа, гонады). Это так называемые прямые нисходящие регулирующие связи. Кроме них внутри указанных систем существуют и обратные восходящие саморегулирующие связи. Обратные связи могут исходить как от периферической железы, так и от гипофиза. По направленности физиологического действия обратные связи могут быть отрицательными и положительными. Отрицательные связи самоограничивают работу системы. Положительные связи самозапускают ее. Так, низкие концентрации тироксина через кровь усиливают выработку тиреотропного гормона гипофизом и тиреолиберина - гипоталамусом. Гипоталамус значительно более чувствителен, чем гипофиз к гормональным сигналам, поступающим от периферических эндокринных желез. Благодаря механизму обратной связи устанавливается равновесие в синтезе гормонов, реагирующее на снижение или повышение концентрации гормонов желез внутренней секреции. Некоторые железы внутренней секреции, такие как поджелудочная железа, околощитовидные железы, не находятся под влиянием гормонов гипофиза. Деятельность этих желез зависит от концентрации тех веществ, уровень которых регулируется этими гормонами. Так, уровень паратгормона околощитовидных желез и кальцитонина щитовидной железы определяется концентрацией ионов кальция в крови. Глюкоза регулирует продукцию инсулина и глюкагона поджелудочной железой. Кроме того, функционирование этих желез осуществляется за счет влияния уровня гормонов-антагонистов. Часть гормонов оказывает влияние на организм через другие железы внутренней секреции. Например, так называемые тропные гормоны гипофиза (см. главу «Гипофиз») действуют, активизируя функцию соответствующей железы внутренней секреции. В механизме действия некоторых гормонов важную роль играет их взаимодействие с определенными внутренними органами: печень, например, принимает активное участие в механизме действия инсулина. Ряд гормонов (адреналин и др.) проявляет свое специфическое действие путем непосредственного взаимодействия с нервной системой.
Методы исследования эндокринных желез:
Для изучения функций желез внутренней секреции используются различные экспериментальные и клинические методы исследования. Наиболее важными из них являются следующие:
1. Метод экстирпации, или удаления железы внутренней секреции с последующим наблюдением за изменением функций организма.
2. Метод трансплантации, т.е. пересадки железы. Аутотрансплантация –пересадка в пределах одного животного с одного на другое место. Гомотрансплантация – пересадка в организм другой особи в пределах одного вида. Гетеротрансплантация – межвидовая пересадка.
3. Введение в организм вытяжек эндокринных желез или их гормонов и наблюдения за происходящими при этом изменениями функций организма.
4. Использование радиоактивных изотопов. В организм вводят гормон, содержащий радиоактивный изотоп (с меченым йодом, углеродом, серой и т.д.) Через некоторый промежуток времени определяют его содержание в различных тканях. Этот метод дает возможность проследить, какими органами, и в каком количестве захватывается гормон, как и в виде каких продуктов, происходит его выделение.
5. Определение количественного содержания гормона. К наиболее современным относятся методы радиоиммунологического определения концентрации гормонов в крови. Здесь используются меченные (радиоактивные) антитела к определенному гормону, где гормон выступает как антиген. Оценивается реакция по степени взаимодействия антиген-антитело, концентрации этих комплексов.
6. Морфологические методы – гистологическое исследование ткани железы позволяет судить в ряде случаев, о её функциональном состоянии. Например, при микроскопии биоптата (прижизненно полученного участка ткани железы) щитовидной железы, в зависимости от её активности, могут определяться пустые фолликулы или наоборот, заполненные; их содержимое может быть различной оптической плотности (золь – гель), и т.д. – что косвенно свидетельствует о функциональной активности железы.
7. Термографические методы – исследуется функциональная активность железы по степени изменения температуры её ткани. Чем выше синтетическая функция, тем выше обмен веществ в железе и, следовательно, её температура.
8. Ультразвуковые методы – являются косвенными методами, при их помощи можно определить размеры и структуру железы, которые тесно связанны с её функциональной активностью.
Кроме того, в клинической практике для исследования желез внутренней секреции применяют рентгеновские методы, метод компьютерной томографии, магнито-резонансной томографии и некоторые другие.
ЧАСТНАЯ ЭНДОКРИНОЛОГИЯ
Гипоталамус
Гипоталамус, или подбугровая область промежуточного мозга, расположен в основании переднего мозга непосредственно под таламусом и над гипофизом. Его вес составляет примерно 5 г. Гипоталамус не имеет четких границ, его можно рассматривать как часть сети нейронов, протягивающейся от среднего мозга через гипоталамус к глубинным отделам переднего мозга. Нервные и нейросекреторные клетки гипоталамуса образуют более 30 ядер
.
Рис. 5. Гипоталамус.
Гипоталамус относится к филогенетически древним образованиям мозга и хорошо развит уже у низших позвоночных. Он образует дно третьего желудочка и лежит между перекрестом зрительных нервов и задним краем маммилярных тел. В состав гипоталамуса входит серый бугор, срединное возвышение, воронка и задняя или нервная доля гипофиза. Спереди он граничит с преоптической областью, которую отдельные авторы также включают в систему подбугорья. Гипоталамус развивается в ранний период эмбриогенеза из переднего мозгового пузыря. В процессе развития головного мозга, после обособления больших полушарий, передний мозговой пузырь дает начало межуточному мозгу, а его полость превращается в третий желудочек. В дне этого желудочка путем выпячивания образуется мозговая воронка, дистальный конец которой превращается в заднюю долю гипофиза. Основание воронки значительно утолщается и дает начало серому бугру. В каудальной части образуются парные маммилярные тела. Боковые стенки третьего желудочка образуют зрительные бугры, связанные с большими полушариями головного мозга. Центральное серое вещество гипоталамуса без резкой границы переходит в центральное серое вещество среднего мозга. Нервные клетки в гипоталамусе собраны в более или менее обособленные группы или ядра, которые занимают в нем определенное место и состоят из различных по своему строению нейронов. Разнообразие нейрального состава ядер гипоталамуса обусловлено их функциональной дифференцировкой. В литературе пока отсутствует единая номенклатура гипоталамических ядер. Пинес и Майман выделяют в гипоталамусе передний, средний и задний отделы. В каждом отделе они различают следующие ядра.
Передний отдел:
1. супрахиазматическое;
2. супраоптическое (передние, латеральные и медиальные отделы);
3. пара-вентрикулярное.
Средний отдел:
1. супраоптическое (задние отделы);
2. туберальные (верхние, средние и нижние);
3. паллидо-инфундибулярное;
4. маммило-инфундибулярное.
Задний отдел:
1. маммило-инфундибулярные;
2. ядра маммилярных тел (внутреннее, наружное, вставочное);
3. супра-маммилярные.
Филогенетически наиболее древними образованиями гипоталамуса являются паравентрикулярное и супраоптическое ядра. Они гомологичны преоптическим ядрам низших позвоночных. Супраоптическое ядро лежит в переднем гипоталамусе над хиазмой и проходит в дорсолатеральном направлении от зрительного перекреста до середины серого, бугра. Гипоталамус - главный координирующий и регулирующий центр вегетативной нервной системы. В гипоталамусе залегают нейроны, которые воспринимают все изменения, происходящие в крови и спинномозговой жидкости (температуру, состав, содержание гормонов и т. д.). Гипоталамус связан с корой большого мозга и лимбической системой. В гипоталамус поступает информация из центров, регулирующих деятельность дыхательной и сердечно-сосудистой систем. В гипоталамусе расположены центры жажды, голода, центры, регулирующие эмоции и поведение человека, сон и бодрствование, температуру тела и т. д. Центры коры большого мозга корректируют реакции гипоталамуса, которые возникают в ответ на изменения внутренней среды организма. В последние годы из гипоталамуса выделены обладающие морфиноподобным действием энкефалины и эндорфины. Считают, что они влияют на поведение (оборонительные, пищевые, половые реакции) и вегетативные процессы, обеспечивающие выживание человека. Итак, гипоталамус регулирует все функции организма, кроме ритма сердца, кровяного давления и спонтанных дыхательных движений, которые регулируются продолговатым мозгом. Одна из наиболее важных функций гипоталамуса связана с регуляцией деятельности эндокринной системы организма.
Разнообразие функции гипоталамуса обусловлено сложностью его морфологического строения и обилием связей с различными отделами нервной системы, органами чувств, внутренними органами и внутренней средой организма. Гипоталамус контролирует деятельность эндокринной системы человека благодаря тому, что его нейроны секретируют нейрогормоны (вазопрессин и окситоцин), а также факторы (гипофизотропные гормоны), стимулирующие или угнетающие выработку гормонов гипофизом . Иными словами, гипоталамус, масса которого не превышает 5% мозга, является центром регуляции эндокринных функций, он объединяет нервные и эндокринные регуляторные механизмы в общую нейроэндокринную систему. Пионерами в изучении гипоталамической нейросекреции являются Шаррер и Гаупп, которые еще в 1933 г. обнаружили в клетках переднего гипоталамуса гранулы и капельки нейросекрета. Последующими исследованиями было установлено широкое распространение явлений нейросекреции не только у позвоночных, но и беспозвоночных животных. Всего же нейроны гипоталамуса секретируют около 40 соединений, многие из которых играют роль синаптических модуляторов или медиаторов нейросекреторной функции гипоталамуса. Гипоталамус образует с гипофизом единый функциональный комплекс, в котором первый играет регулирующую, а второй эффекторную роль. Гипоталамические гормоны высвобождаются в пульсирующем режиме и контролируют функцию гипофиза, а их уровень в свою очередь определяется уровнем в крови гормонов периферических эндокринных желез, достигающих гипоталамуса, по принципу обратной связи (сигналами активации при недостатке гормонов или ингибирования при высоком их уровне).
Экспериментальные исследования с выключением (разрушением) отдельных структур гипоталамуса и нарушением его нервных связей с другими отделами головного мозга позволили установить, что нервный контроль передней доли гипофиза осуществляется двумя механизмами (уровнями регуляции).
Первый уровень регуляции реализует так называемая гипофизотропная область гипоталамуса, которая контролирует исходную (базальную) секрецию передней доли гипофиза и нейрогипофизарную секрецию. Второй, более высокий уровень обеспечивается другими гипоталамическими и внегипоталамическими областями мозга (гиппокамп, передний таламус, средний мозг и др.), которые принимают участие в стимуляции или угнетении функции гипофиза.
Гипоталамус имеет богатую сеть кровеносных сосудов, которые в области срединного возвышения образуют портальную систему. Наибольшей васкуляризацией отличается паравентрикулярное и супраоптическое ядра, в которых каждая клетка связана с 2—3 капиллярами. Здесь на площадь 1 мм2 приходится до 2650 капилляров.
Гипофизотропные гормоны
Известные в настоящее время гипофизотропные гормоны гипоталамуса делятся на гормоны, усиливающие (высвобождающие, рилизинг-гормоны) и угнетающие (ингибирующие) секрецию и высвобождение (выделение) соответствующих тропных гормонов передней доли гипофиза. Комиссия по биохимической номенклатуре Международного общества чистой и прикладной химии Международного биохимического общества (1974 г.) рекомендовала принять окончание “либерин” в названиях гормонов гипоталамуса, усиливающих высвобождение соответствующих тропных гормонов гипофиза (например, кортиколиберин), и окончание “статин” в названиях гормонов с ингибирующим эффектом (например, соматостатин).
Установлено существование следующих гипофизотропных гормонов: 1) гормон, высвобождающий лютеинизирующий и фолликулостимулирующий гормоны – гонадолиберин (люлиберин); 2) кортикотропин-рилизинг-гормон кортиколиберин; 3) соматотропин-рилизинг-гормон – соматолиберин; 4) гормон, угнетающий высвобождение гормона роста – соматостатин; 5) пролактин-рилизинг-гормон – пролактолиберин, функцию которого выполняют, вероятно, тиролиберин и ВИП; 6) гормон, угнетающий высвобождение пролактина – пролактостатин, роль которого выполняет дофамин; 7) тиротропин-рилизинг-гормон – тиролиберин; 8) гормон, высвобождающий меланоцитостимулирующий гормон – меланолиберин; 9) гормон, угнетающий высвобождение меланоцитостимулирующего гормона – меланостатин. Существование двух последних гормонов у человека окончательно не доказано.
Гипофизотропные гормоны секретируются нейронами, локализованными в различных областях гипоталамуса. Так, паравентрикулярное ядро гипоталамуса содержит большое количество нейронов, секретирующих тиролиберин и кортиколиберин; дугообразное (аркуатное) ядро содержит нейроны, секретирующие соматолиберин и пролактостатин (дофамин); нейроны, секретирующие соматостатин, располагаются в передней гипоталамической области, а гонадолиберин – в предоптической области. Аксоны перечисленных нейронов заканчиваются в области срединного возвышения гипоталамуса, где начинается портальная система гипофиза, c помощью которой гипоталамус сообщается с передней долей гипофиза. Перечисленные химические медиаторы (гипофизотропные гормоны, моноамины), относящиеся к малым пептидам и биогенным аминам, высвобождаются из гипоталамических нейронов в систему портального кровообращения и, достигая клеток аденогипофиза, модулируют их специфическую активность. Установлено, что нервные терминали (аксоны) нейронов гипоталамуса имеют здесь тесные контакты с первичным капиллярным сплетением, где и происходит высвобождение гипофизотропных гормонов в кровь и их транспорт портальной системой к гипофизу. Концентрация гипофизотропных гормонов в этой системе наивысшая по сравнению с их содержанием в общем кровотоке.
Кортиколиберин.Кортитропин-рилизинг-фактор был первым из гипофизотропных гормонов, который был частично охарактеризован еще в 1955 г., однако лишь в 1983 г. W. Vale с сотрудниками представили полную химическую и клиническую его характеристику. Интересно, что для получения 1 мг этого гормона (такое количество необходимо для химической характеристики) исследователи фракционировали 500 тысяч гипоталамусов овцы. В последующие годы кортиколиберин был выделен и из гипоталамуса свиньи, крысы, человека и других животных. Этот пептид состоит из 41 аминокислотного остатка. Основное количество кортиколиберина локализуется в гипоталамусе, однако он выявляется и в других отделах ЦНС, включая кору головного мозга и различные ядра. Многочисленными исследованиями показано, что адреналэктомия или гипофизэктомия приводит к увеличению содержания кортиколиберина в указанных областях гипоталамуса. Изучение структуры кортиколиберина, полученного из гипоталамуса различных животных, показало, что только кортиколиберин человека и крысы имеет идентичную структуру.
Период полураспада кортиколиберина в плазме составляет около 60 минут. Кортиколиберин селективно увеличивает высвобождение АКТГ.
Соматолиберин. Соматотропинвысвобождающий фактор был выделен из гипоталамуса еще в 1964 г. Однако его химическая структура была установлена лишь в 1980-е годы, когда вначале L. Frohman и соавт. (1981) частично охарактеризовали пептид, обладающий способностью усиливать высвобождение СТГ. Химическая структура соматолиберина была установлена R. Guillemin и соавт. (1981). Молекула соматолиберина включает 44 аминокислотных остатка, причем биологическую активность проявляет ее часть с первыми 29 аминокислотными остатками.
Однократное введение соматолиберина приводит к более чем 20-кратному повышению содержания СТГ в крови, которое снижается до исходного уровня в течение 3 ч. Имеются сообщения, что при этом может незначительно изменяться уровень пролактина в крови. Период полураспада соматолиберина в крови составляет около 7 мин.
Исследования показали, что соматолиберин синтезируется в дугообразном (аркуатном) и вентромедиальном ядрах гипоталамуса.
Соматостатин. При попытках выделить из гипоталамуса овец соматолиберин в лаборатории, руководимой Р. Гелемином, в 1973 г. был получен полипептид, который угнетал высвобождение гормона роста из культуры гипофиза крыс (P. Brazeau и соавт., 1973). В том же году была расшифрована структура. Таким образом, соматостатин является тетрадекапептидом.
L. Pradayrol и соавт. (1980) первыми показали, что в тканях соматостатин присутствует в нескольких формах и, в частности, в форме белка, химическая структура которого включает 28 аминокислотных остатков.
В настоящее время доказаны следующие влияния соматостатина: 1) ингибирование секреции гастрина, секретина, ТТГ, СТГ, инсулина, глюкагона, мотилина, глицентина, ВИП, ренина; 2) угнетение секреции соляной кислоты и пепсина желудком, уменьшение моторики желудка, ингибирование секреции бикарбонатов и ферментов поджелудочной железой, снижение абсорбции в кишечнике, уменьшение кровотока на всем протяжении желудочно-кишечного тракта, снижение секреции и транспорта желчи.
Сниженное количество соматостатина в гипоталамусе гипофизэктомированных крыс восстанавливалось до нормы под влиянием экзогенного СТГ.
Тиролиберин.Установлено, что высвобождение ТТГ из передней доли гипофиза регулируется гипоталамусом посредством тиротропин-рилизинг-гормона, или тиролиберина. Химическая структура тиролиберина была установленна 1970 году, первым из гипофизотропных гормонов.
Вскоре после установления структуры тиролиберина он был синтезирован, причем биологическая активность натурального и синтетического препарата оказалась идентичной.
Цитоиммунохимические исследования показали, что тиролиберин широко представлен в ЦНС и желудочно-кишечном тракте. Опыт клиничекого применения тиролиберина показал, что его введение уже в течение первых 5 минут стимулирует высвобождение ТТГ в кровь и последующее повышение уровня тироидных гормонов. Кроме специфического влияния на ТТГ, тиролиберин увеличивает уровень пролактина в сыворотке крови, проявляя свойства пролактолиберина. Тиролиберин влияет на поведенческие реакции, усиливает двигательную активность, проявляет депрессивные эффекты.
Гонадолиберин.Известно, что репродуктивная функция организма регулируется гипофизом (посредством ФСГ, ЛГ и пролактина), а функция последнего находится под контролем ЦНС, в том числе гипоталамуса. Разрушение гипоталамуса при интактном гипофизе и полной сохранности его кровоснабжения приводит к атрофии гонад и полностью прекращает половое развитие животных.
Ранее считалось, что в гипоталамусе секретируется люлиберин, высвобождающий ЛГ, и фоллиберин, высвобождающий ФСГ.
В настоящее время ни у кого не вызывает сомнения, что гипоталамическая регуляция ФСГ и ЛГ осуществляется одним гормоном – гонадолиберином. Нейроны, содержащие гонадолиберин, выявляются в обширной области гипоталамуса от перекреста зрительных нервов до супраоптического ядра, но наибольшее их количество локализуется в медиобазальном гипоталамусе. Гонадолиберин секретируется пульсирующим образом (всплески активности продолжаются в течение 8-16 мин и повторяются в интервалах через 37-56 мин). При введении гонадолиберина отмечается его быстрое накопление в печени, почках и гипофизе. Синтезирован гонадолиберин для клинического применения. Он индуцирует половое созревание, либидо, потенцию, овуляцию или сперматогенез. Гонадолиберин оказывает выраженное влияние на половое поведение животных, воздействуя на сексуальные центры ЦНС. Период полураспада гонадолиберина в плазме составляет 5-7 минут. Пролактолиберин. Из экстрактов гипоталамуса различных животных (крысы, птицы и др.) изолированы фракции, обладающие способностью высвобождать пролактин. из гранул. Обнаружен также в срединном возвышении и экстрагипо-таламических структурах. Химическая природа не установлена и вопрос о его применении окончательно не решен.
Пролактостатин. Известно, что ЦНС млекопитающих участвует в регуляции секреции пролактина, которая подвержена различным влияниям (акт сосания, эмоциональный стресс и др.). В противоположность действию на другие гормоны передней доли гипофиза в отношении секреции пролактина гипоталамус оказывает тоническое тормозящее влияние. Перерезка ножки гипофиза, т.е. перерыв связи между гипоталамусом и аденогипофизом, приводит к повышению высвобождения пролактина.
В 1974-1977 гг. в лаборатории, руководимой А. Шелли, из гипоталамуса свиньи были получены высокоочищенные фракции пролактостатина.
В настоящее время считают, что роль пролактостатина в организме выполняет дофамин. Это подтверждает и клиническая практика, показавшая успешное применение для лечения гиперпролактинемии агонистов дофамина (парлодел, лизурид и др.).
Меланолиберин и меланостатин. На протяжении многих лет проводятся исследования по выяснению механизмов гипоталамической регуляции секреции меланоцитостимулирующего гормона. В лаборатории, руководимой A. Schally (1966-1974), путем ферментативного разрушения окситоцина было получено несколько пептидов, из которых пептид Pro-Leu-Gly-NH2 обладал наибольшей меланостатической активностью (меланостатин-1). Из гипоталамуса крупного рогатого скота был выделен другой пептид, который угнетал высвобождение МСГ из гипофиза. Помимо меланостатина, из гипоталамуса животных был получен гормон, усиливающий высвобождение МСГ-меланолиберин (пентапептид). Незначительные количества этого гормона снижали содержание МСГ в гипофизе и повышали его уровень в крови экспериментальных животных (крыс).
Кроме того, в переднем отделе гипоталамуса располагаются парные супраоптические и паравентрикулярные ядра, образованные крупными холинергическими нейросекреторными клетками. В нейронах этих ядер продуцируются белковые нейрогормоны - вазопрессин, или антидиуретический гормон, и окситоцин. У человека выработка антидиуретического гормона совершается преимущественно в супраоптическом ядре, тогда как продукция окситоцина преобладает в паравентрикулярных ядрах. Вазопрессин и окситоцин по разветвлениям аксонов нейро-секреторных клеток поступают в заднюю долю гипофиза, и накапливаются в расширении аксонов, которое лежит выше аксовазального синапса и называется накопительным тельцем Геринга., откуда разносятся кровью.
Таким образом, гипоталамус является высшим центром регуляции эндокринных функций, он объединяет нервные и эндокринные регуляторные механизмы в общую нейро-эндокринную систему, координирует нервные и гормональные механизмы регуляции функций внутренних органов.
Гипофиз
Гипофиз (от греческого "гипо" - под; нижний придаток мозга) - это небольшая, овальной формы железа находится на основании головного мозга (нижней поверхности) в гипофизарной ямке турецкого седла клиновидной кости, отделяется от полости черепа отростком твердой оболочки головного мозга и образует диафрагму седла. Диафрагма седла имеет в центре отверстие, через которое гипофиз соединён с воронкой гипоталамуса промежуточного мозга; посредством её гипофиз связан с серым бугром, расположенным на нижней стенке III желудочка. По бокам гипофиз окружён пещеристыми синусами. Снаружи гипофиз накрыт капсулой. Масса гипофиза колеблется в зависимости от возраста и состояния организма. У новорожденного в возрасте до 2 мес. она составляет 0,07-0,1 г. Затем масса гипофиза увеличивается, особенно в пубертатный период и к 14-19 годам достигает максимума (у девушек-0,7 г, у юношей-0,66 г). Масса гипофиза у взрослого человека составляет 0,6-0,7 г. При беременности масса гипофиза увеличивается до 1 г, что связано с повышением его функциональной активности в этот период. В некоторых случаях у многорожавших женщин масса гипофиза достигает 1,6 г. После родов масса гипофиза уменьшается, но не до исходных цифр, поэтому у женщин она может быть значительно больше, чем у мужчин того же возраста. Поперечный размер гипофиза 10-17 мм, переднезадний - 5-15 мм, вертикальный - 5-10 мм. Гипофиз развивается из двух эктодермальных зачатков различного происхождения: выпячивания первичного ротового углубления (карман Ратке) и выпячивания дна 3-го желудочка мозга (воронка). В дальнейшем из передней стенки кармана Ратке образуется передняя доля гипофиза, из задней – промежуточная его доля. Задняя доля и ножка гипофиза образуются из вертикального выпячивания дна 3-го желудочка мозга. Гипофиз в виде самостоятельного образования выявляется уже на 4-5-й неделе беременности, а дифференцировка клеточного состава заканчивается к 20-й неделе эмбриональной жизни.
Рис. 6. Гипофиз (схема).
Рис. 7. Гипофиз (hipophysis) Вид снизу:
7-гипофиз
В гипофизе выделяют переднюю (аденогипофиз) и заднюю (нейрогипофиз) доли. У многих животных представлена также промежуточная доля (pars intermedia), однако у человека она практически отсутствует.
Аденогипофиз, или железистая доля гипофиза, составляет около 75% от массы всего гипофиза. Он состоит из тяжей и скоплений эпителиальных железистых клеток, которые разделяются многочисленными тяжами-трабекулами. Строма передней доли гипофиза представлена соединительной тканью. Гистологически в передней доле гипофиза
различали 3 группы клеток: ацидофилы, базофилы и хромофобные клетки.
Современные методы исследования – иммуноцитохимия и электронная микроскопия – позволили пересмотреть классификацию клеток передней доли гипофиза, положив в ее основу их функциональные особенности. В соответствии с этим в аденогипофизе различают 5 типов клеток: соматотрофы, лактотрофы, кортикотрофы, тиротрофы, гонадотрофы. Первые 2 вида клеток ранее относили к ацидофильным клеткам, а остальные клетки относились к базофилам.Соматотрофы, или клетки, продуцирующие гормон роста (соматотропный гормон, СТГ), составляют почти 50% всего клеточного состава аденогипофиза. Локализуются преимущественно в латеральных отделах гипофиза.
Лактотрофы, или клетки, продуцирующие пролактин, составляют 15-20% клеточного состава гипофиза, располагаются в заднелатеральной области гипофиза. Лактотрофы в гипофизе эмбриона появляются последними, и их количество к концу беременности значительно увеличивается под влиянием эстрогенов матери. После родов их количество уменьшается и остается низким в течение всего детства. Количество лактотрофов увеличивается почти в 2 раза при беременности и увеличение массы и размеров гипофиза, наблюдаемое при каждой беременности, обусловлено резкой истинной гиперплазией лактотрофов.
Рис. 8. Передняя доля гипофиза человека:
1 - ацидофильные клетки; 2 - базофильные клетки; 3 - хромофобные клетки;
4 - прослойки соединительной ткани.
Тиротрофы, или клетки, секретирующие тиреотропный гормон (ТТГ), составляют около 5% клеточного состава аденогипофиза. Тиротрофы локализуются в переднемедиальной и переднелатеральной областях гипофиза. При первичном гипотирозе они гиперплазируются, увеличивается их количество, что приводит к образованию аденомы. И, наоборот, при тиротоксикозе уменьшается количество и размер тиротрофов. Кортикотрофы, или клетки, секретирующие адренокортикотропный гормон (АКТГ), локализуются в переднемедиальной части гипофиза и составляют около 15-20% от всех клеток аденогипофиза. При длительном гипокортицизме наблюдается увеличение количества кортикотрофов и их вакуолизация.
Гонадотрофы, или клетки, секретирующие гонадотропины (фолликулостимулирующий гормон, ФСГ и лютеинизирующий гормон ЛГ), составляют около 10-15% от клеточного состава аденогипофиза. Они локазизуются повсеместно по передней доле гипофиза, но преимущественное их количество выявляется в латеральных отделах гипофиза. После удаления половых желез в гипофизе выявляются “кастрационные” клетки, или клетки гонадэктомии, представляющие собой большие гонадотрофы с бледной вакуолизованной протоплазмой и ядром, расположенным на периферии. При первичном гипогонадизме выявляется гипертрофия гонадотрофов, иногда приводящая к увеличению размеров гипофиза.
Применение иммунохимических методов идентификации клеток передней доли гипофиза показало, что часть клеток передней доли гипофиза не секретируют каких-либо гормонов. Такие клетки раньше назывались хромофобными клетками, а в соответствии с настоящей классификацией – нулевыми клетками.
Промежуточная, доля гипофиза, как и передняя, — эпителиального происхождения. У человека ее функцию выполняет небольшая группа клеток передней части задней доли, эмбриологически и функционально связанных с аденогипофизом.
Эндокриноциты промежуточной доли способны вырабатывать меланоцитостимулирующий гормон (МСГ), а также липотропный гормон (ЛПГ).
Рис. 9. Расположение передней (АГ), промежуточной (ПГ) и задней (ЗД) долей гипофиза по отношению к гипоталамусу и воротной системе.
Рис. 10. Промежуточная доля гипофиза человека:
1 - фолликулоподобные структуры; 2 - прослойки соединительной ткани.
Задняядоля гипофиза (нейрогипо́физ), состоит из нервной доли и воронки, соединяющей нервную долю со срединным возвышением промежуточного мозга. Нервная доля образована клетками эпендимы (питуицитами) и окончаниями аксонов нейросекреторных клеток паравентрикулярного и супраоптического ядер гипоталамуса, в которых и синтезируются вазопрессин (антидиуретический гормон) и окситоцин, транспортируемые по нервным волокнам, составляющим гипоталамо-гипофизарный тракт, в нейрогипофиз.
В задней доле гипофиза эти гормоны депонируются и оттуда поступают в кровь. Нейрогипофиз – место не только депонирования, но и своеобразной активации поступающих сюда нейрогормонов, после чего они высвобождаются в кровь.
Синтез гормонов передней доли гипофиза происходит не одновременно.
На 9-й неделе беременности в гипофизе плода выявляются гормон роста и АКТГ. Почти в это же время иммуноцитохимическими методами подтверждается наличие ТТГ, ФСГ, ЛГ.
Пролактин выявляется на 19-20-й неделе беременности, гипоталамические гормоны (окситоцин и вазопрессин) выявляются в гипофизе и гипоталамусе уже на 10-11-й неделе беременности.
Рис. 11. Задняя доля гипофиза человека:
1 - ядра питуицитов; 2 - кровеносные сосуды.
Возрастные изменения в гипофизе. В постнатальном периоде активируются преимущественно ацидофильные клетки (очевидно, в связи с обеспечением повышенной продукции соматотропина, стимулирующего быстрый рост тела), а среди базофилов преобладают тиротропоциты.
В пубертатном периоде, когда наступает половое созревание, увеличивается количество базофильных гонадотропов.
Аденогипофиз обладает ограниченной регенераторной способностью, главным образом за счет специализации хромофобных клеток. Задняя доля гипофиза, образованная нейроглией, регенерирует лучше.
По важности выполняемых в организме функций гипофиз можно сравнить с ролью дирижёра оркестра, который лёгкими взмахами палочки показывает, когда тот или иной инструмент должен вступать в игру. Поэтому признаем вслед за знаменитым канадским патофизиологом Г. Селье, что гипофиз - своеобразный "эндокринный мозг". Гипофиз действительно дирижер, и как таковой обычно исполняет не свою музыку. Композитором же надо признать гипоталамус - отдел ствола мозга, для которого характерно скопление нейросекреторных клеток.
Гипофиз вырабатывает гормоны, которые стимулируют работу практически всех других желёз внутренней секреции.
Гормон роста.
На рост и развитие организма влияют многие гормоны, но наиболее важную роль в этом сложном процессе играет, видимо, именно гипофизарный гормон роста (соматотропин). Соматотропин секретируется аденогипофизарными клетками непрерывно и «вспышками» через 20—30 мин и 3—5 ч с отчетливой суточной ритмикой — повышение секреции соматотропина происходит во время глубокого сна, на ранних его стадиях (народная мудрость гласит: «человек растет, когда спит»). После удаления гипофиза рост практически прекращается. Введение этого гормона молодым животным ускоряет рост, а у взрослых может приводить к его возобновлению, причем исследование обмена веществ в этих случаях, всегда выявляет снижение экскреции (выведения) азота из организма. Задержка азота – необходимый признак истинного роста, свидетельствующий о том, что действительно происходит образование новых тканей, а не просто увеличение массы тела за счет накопления жира или воды. Стимуляция процессов роста обусловлена способностью соматотропина, усиливать образование белка в организме, повышать синтез РНК, усиливать транспорт аминокислот из крови в клетки. Органами-мишенями для него являются кости, а также образования, богатые соединительной тканью, — мышцы, связки, сухожилия, внутренние органы. Наиболее ярко влияние гормона выражено на костную и хрящевую ткани. Кроме того, усиливаются также процессы минерализации костной ткани, в результате чего в организме происходит задержка кальция и фосфора. Действие соматотропина происходит посредством "соматомединов", которые образуются в печени под влиянием соматотропина. Обнаружено, что у пигмеев на фоне нормального содержания соматотропина не образуется соматомедин С, что, по мнению исследователей, служит причиной их маленького роста. Соматотропин обладает выраженным действием на углеводный обмен. Под влиянием данного гормона увеличивается содержание глюкозы в плазме крови. Гормо