Глава 1. биохимия плазмы крови
Кровь (по мнению древних, река жизни) – жидкая соединительная ткань, состоящая из суспензии клеток в концентрированном растворе белков, образующая волокнистую структуру при свертывании.
Среди основных функций этой ткани можно выделить:
дыхательную, которую выполняют клетки эритроидного ряда, захватывая в легких кислород и перенося его к тканям, а в обратном направлении – углекислый газ;
питательную - с помощью плазмы осуществляется доставка к клеткам многочисленных необходимых соединений: витаминов, различных ионов, углеводов, аминокислот, высших жирных кислот и их производных;
терморегуляторную – плазма крови обладает высокой удельной теплоемкостью и одновременно хорошей теплопроводностью, что увеличивает потери тепла при испарении воды с поверхности кожи;
защитную – а) элементы свёртывающей системы крови защищают от неадекватных кровопотерь; б) групповая специфика крови; в) обеспечивает иммунитет: неспецифический - c помощью фагоцитоза (нейтрофилов, моноцитов), специфический - за счёт гамма-глобулинов и других иммунных белков (гуморальный) и Т-лимфоцитов (клеточный);
регуляторную– плазмой крови к клеткам-мишеням транспортируются различные биологически активные вещества – гормоны, витамины;
выделительную – продукты метаболизма клеток током крови доставляются к соответствующим системам;
поддержаниекритериев гомеостаза – онкотического давления за счет белков, кислотно-основного состояния (КОС) с помощью буферных систем (бикарбонатов, фосфатов, протеинов).
Особая роль в плазме крови принадлежит белкам (табл. 1), среди которых выделяют альбумины, глобулины, фибриноген.
Около половины объёма крови занимают форменные элементы, основными из которых являются эритроциты (99%). В их общем пуле на долю молодых приходится 5%, зрелых – 85%, стареющих – 10%.
Эритроцит совсем смешон –
Всех органоидов лишён.
Навеки быть ему судьбина
Контейнером гемоглобина.
Однако назначение красных кровяных телец совсем не сводится к этой шутливой формулировке. За счет их карбоангидразы осуществляется взаимодействие диоксида углерода с водой – и транспорт углекислоты. Очень велика роль ионообмена между эритроцитами и плазмой (обмена протонов на катионы натрия) в регуляции КОС и электролитного баланса организма. Огромна ёмкость гемоглобина как буферной системы. Красные кровяные тельца служат адсорбентами для иммунных комплексов, физиологически предохраняют сосудистую стенку от развития иммунных васкулитов.
Таблица 1
Функции белков плазмы
Функция | Пример |
Транспортная | Тироксинсвязывающий глобулин Транскортин Сексстероидсвязывающий белок Витамин Д-связывающий глобулин Гаптоглобин (транспорт гемоглобина) Гемопексин (транспорт гема) Аполипопротеины (транспорт холестерина, триацилглицеролов) Трансферрин (транспорт железа) Церулоплазмин (транспорт меди) |
Гуморальный иммунитет | Иммуноглобулины |
Поддержание онкотического давления | Все белки, особенно альбумины |
Ферменты | Ренин, факторы свёртывания крови, белки комплемента |
Ингибиторы протеаз | Альфа-1-антитрипсин |
Буферность | Все белки |
ГЛАВА 2. БИОХИМИЯ ЭРИТРОЦИТОВ
СТРОЕНИЕ МЕМБРАН ЭРИТРОЦИТОВ. ОСОБЕННОСТИ
МЕТАБОЛИЗМА
Зрелые красные кровяные тельца обладают двояковогнутой формой и большой способностью к деформации, благодаря чему эффективно обеспечивают процессы диффузии газов и могут проходить через капилляры, диаметр которых в 3-4 раза меньше самих эритроцитов. Подобное свойство обусловлено особенностями в структуре мембран этих форменных элементов.
Принципы строения цитолеммы эритроцитов классические: основу составляет билипидный слой, в который встроены различные протеины. Наружная часть липидов представлена холинсодержащими соединениями (фосфатидилхолином, сфингомиелином), внутренняя поверхность обогащена фосфатидилсерином, фосфатидилэтаноламином, более четверти объёма приходится на холестерин. К цитозолю обращена плотная анастомозирующая белковая сеть, состоящая из спектринов, анкиринов, тропомиозинов, которые связываясь с интегральными гликопротеидами (гликофоринами) создают определённую жёсткость мембраны, определяют форму эритроцита (двояковогнутый диск). От степени фосфорилирования спектринов зависит эластичность сети, способность к упругой деформации. Гликофорины, пронизывая липидный слой, с помощью гидрофобных взаимодействий с фосфолипидами прочно фиксируются; их углеводные компоненты (олигосахариды, их производные, сиаловые кислоты), располагаясь на поверхности мембраны эритроцита, служат групповыми веществами крови: для О(Н) антигена детерминанта фукоза, для А-антигена - N-ацетилгалактоз-амин, для В – галактоза. Углеводные остатки гликофоринов являются также носителями антигенов групп крови MN-типа и ряда других иммунологических детерминант, служат рецепторами для вирусов гриппа и т.д.
Несмотря на отсутствие ядра и других органоидов, красные кровяные тельца весьма метаболически активные образования, обладающие спонтанной энергопродукцией на уровне 80 пДж на клетку. Энергетика эритроцита основана на анаэробном гликолизе (рис. 1). Глюкоза быстро проникает в клетку, независимо от присутствия инсулина.
Рис.1. Схема гликолиза и антирадикальной защиты в эритроците.
В пути Эмбдена-Мейергофа глюкоза распадается до лактата с образованием АТФ путём субстратного фосфорилирования. Следует заметить, что кроме энергетической функции, метаболиты гликолиза используются в следующих процессах. Восстановительные потенциалы генерируются в виде НАДН, который при необходимости используется метгемоглобин-редуктазой для восстановления железа в метгемоглобине. В отличие от других тканей в эритроцитах в качестве метаболита образуется много 2,3-дифосфоглицерата (2,3-ДФГК) (в 1000 раз больше), который служит важным модулятором сродства гемоглобина к кислороду.
Некоторые морфобиохимические особенности красных кровяных телец предопределяют необходимость в высокой антиоксидантной активности. Во-первых, это высокие концентрации О2, что увеличивает вероятность образования его активных форм. Во-вторых, большое содержание ионов переходного металла – железа, что может способствовать его использованию в качестве донора электронов (рис.1). И, наконец, для обеспечения упругой деформации в липидном бислое мембран содержится больше ПНЖК – субстратов ПОЛ, чем в цитолемме других клеток. Для контроля интенсивности свободнорадикальных процессов, в цитоплазме эритроцитов активно работает антирадикальная защита.
Если нарушаются условия диссоциации оксигемоглобина (в кармане глобина, где расположен гем, оказываются ионы, молекулы воды), то в этом случае происходит отрыв электрона от двухвалентного железа гема с образованием метгемоглобина и супероксидного анион-радикала. Первое соединение восстанавливается с помощью метгемоглобинредуктазы, а радикал кислорода преобразуется под влиянием супероксиддисмутазы(СОД) в пероксид водорода, который также токсичен для клеток. Поэтому он восстанавливается с первоначально помощью каталазы, позднее глутатионпероксидазы (ГПО) (рис.1) и восстановленного глутатиона. Чтобы поддержать пул последнего, работает глутатионредуктаза (ГР), которая восстанавливает окисленную форму пептида, применяя в качестве восстановителя НАДФН. Необходимую концентрацию этого варианта кофермента получают путем окисления глюкозо-6-фосфата соответствующей дегидрогеназой. В мембранах эритроцитов продуктами свободнорадикальных процессов могут быть липопероксиды (ROOH), которые своевременно удаляются восстановленным глутатионом с участием ГПО:
|
ОБМЕН ПОРФИРИНОВ
Порфирины широко распространены в природе. Они обнаружены в нефти, сланцах, глубинных минеральных водах, метеоритах, в образцах лунного грунта. Порфирины входят в состав хлорофилла растений, которые с его помощью улавливают солнечную энергию и осуществляют фотосинтез. В животном мире эти вещества участвуют в образовании гема, который служит простетической группой таких белков, как гемоглобин, миоглобин, каталаза, пероксидазы, цитохромы, триптофан-2,3-диоксигеназаи др.
Основой молекулярной структуры порфиринов является кольцо порфина, которое состоит из 4-х пирролов, соединённых друг с другом метиновыми мостиками (=СН – ). При восстановлении последних нарушается целостность сопряжённой системы, соединения становятся бесцветными, преобразуясь в порфириногены. Только они в организме подвергаются обменным превращениям. Порфирины же, лишенные дополнительных атомов водорода, метаболически инертны и выделяются из организма с мочой, желчью и калом.
Хотя способностью синтезировать порфирины обладает каждая клетка (кроме эритроцитов), их наибольшее количество образуется у человека в эритробластах костного мозга и гепатоцитах печени. В костном мозге порфирины, формируя комплексы с ионами железа (гем), утилизируются для образования гемоглобина. Синтезированные в печени порфирины включаются в цитохромы, в первую очередь, в Р450, а также в каталазы, пероксидазы и другие ферменты.
СИНТЕЗ ГЕМА
Исходными метаболитами синтеза гема, который катализирует сложная ферментативная система, служат сукцинил-КоА и глицин(по 8 молекул каждого) (Рис.2). Сукцинил-КоА является продуктом не только ЦТК, но и образуется при распаде треонина, метионина, тимина, высших жирных кислот с нечетным числом атомов углерода.
В ходе альдольной конденсации этих соединений (1) в митохондриях образуется 5-аминолевулиновая кислота(АЛК). Скорость этого процесса контролируется ключевым ферментом – 5-аминолевулинатсинтазой, кофактором которой является пиридоксаль-фосфат. Активность энзима индуцируется сниженным количеством гема.
|
Рис.2. Система ферментов и основные этапы биосинтеза гема.
На втором этапе из молекул АЛК, вышедших в цитоплазму, под влиянием специфической дегидратазы (2) синтезируются 4 молекулы порфобилиногена (ПБГ). В дальнейшем из них формируется тетрапиррольная молекула уропорфириногена (УП-гена). Данный этап катализируется двумя энзимами: ПБГ–дезаминазой и уропорфириноген-косинтетазой (3). В этих условиях обычно образуется УП-ген III. При отсутствии косинтетазы или снижении её активности в значительных количествах получается изомер УП-ген I, который ограничен в своих дальнейших преобразованиях и, как побочный метаболит, выделяется из организма. В норме синтез изомеров 1 типа минимален, однако при некоторых патологических состояниях и генетических нарушениях эти вещества могут накапливаться (4).
Дальнейшие превращения УП-гена III, молекула которого содержит 8 карбоксильных групп, протекают под контролем УП-гендекарбоксилазы (4), осуществляющей последовательное декарбоксилирование соединения до копропорфириногена III (КП-ген). Затем, после возвращения в митохондрии, это соединение подвергается действию системы энзимов: КП-ген- и протопорфириноген-оксидаз (5,6). Под влиянием первого фермента происходит окислительное декарбоксилирование КП-гена III до протопорфириногена IХ (5), окисление которого катализируется вторым энзимом (6). В клетках костного мозга за сутки синтезируется до 30 мг этого соединения, которое комплексируясь с ионами двухвалентного железа (ферроионами), образует гем. Этот этап катализируется феррохелатазой (гемсинтетазой) (7). В дальнейшем, как отмечено выше, гем включается в различные белки – гемопротеиды.
Скорость синтеза гема регулируется следующими факторами:
а) активность АЛК-синтазы лимитирует этот процесс;
б) генез АЛК-синтазы определяется количеством железа;
в) уровень же последнего в клетке зависит от работы рецептора трансферрина.
СТРОЕНИЕ ГЕМОГЛОБИНА
В разные периоды жизни зародыша и ребёнка активно работают различные гены, ответственные за синтез нескольких полипептидных цепей глобина. Выделяют 6 субъединиц: α, β, γ, δ, ε, ζ. Первая и последняя из них включают по 141, а остальные по 146 аминокислотных остатков. Друг от друга они отличаются не только количеством мономеров, но и их составом. Однако принцип образования вторичной структуры у всех цепей однотипен: они все сильно (до 75% длины) спирализованы за счёт водородных связей. Альфа-цепи включают 7, а бета, гамма, дельта – 8 спирализованных фрагментов, чередующихся с аморфными участками. Компактная укладка в пространстве подобного образования приводит к возникновению третичной структуры; причем при этом создаётся карман, куда и вкладывается гем. Возникший комплекс сохраняется с помощью приблизительно 60 гидрофобных взаимодействий между белком и простетической группой. Естественно, что в образовании углубления принимают активное участие гидрофобные аминокислоты (фенилаланин, валин, лейцин). Подобная глобула объединяется с 3 сходными субъединицами, используя для этого бисульфидные мостики и ковалентные взаимодействия (четвертичная структура). Получается белок, составленный из 4 полипептидных цепей (гетерогенный тетрамер), имеющий форму тетраэдра.
В зависимости от характера включённых протомеров различают следующие виды нормальных гемоглобинов (Hb). В первые 20 суток существования эмбриона в ретикулоцитах образуется Hb P (Primitive) в виде двух вариантов: Hb Gower 1, состоящего из дзета- и эпсилон-цепей, соединенных попарно, и Hb Gower 2, в котором дзета-последовательности уже заменены на альфа. Переключение генеза одного вида цепей на другой осуществляется медленно: вначале появляются отдельные клетки, продуцирующие иной вариант. Они дают стимул клонам новых клеток, синтезирующих другой вид полипептида. Позднее эти клетки начинают преобладать и постепенно вытесняют старые.
На 8-й неделе жизни зародыша включается синтез гемоглобина F = α2 γ2, по мере же приближения акта родов появляются ретикулоциты, содержащие Hb A = α2β2. На его долю у здорового взрослого человека приходится 96 – 98% от общей массы этого белка. Кроме того, в отдельных эритроцитах присутствуют гемоглобины Hb A2 = α2δ2 (1,5 – 3%) и фетальный (обычно не больше 1%). Однако в некоторых регионах, в том числе и у аборигенов Забайкалья концентрация последнего вида повышается до 4% (в норме).
ФОРМЫ ГЕМОГЛОБИНА
Описаны следующие формы данного гемопротеида.
а) Дезоксигемоглобин – свободная от газов форма протеина.
б) Оксигемоглобин – продукт включения кислорода в молекулу белка:
|
Интересно, что первоначальное связывание кислорода с одной субъединицей ускоряет присоединение последующих молекул (положительный кооперативный эффект). Одна молекула Hb способна удерживать 4 молекулы газа.
Структуры дезокси- и оксиHb несколько отличны. При отсутствии кислорода ферроион в гемоглобине имеет координационное число 5, связан c 4 атомами азота протопорфирина и с третичным атомом азота имидазольного кольца остатка гистидина белковой субъединицы. Шестое координационное место в оксигемоглобине способен занять только молекулярный кислород. Образованию этой связи благоприятствует высокая электронно-донорная способность порфириновой сопряженной системы и имидазола. Структура белка в Hb такова, что она экранирует подход к атому Fe (II) всех других молекул, имеющихся в крови, и своевременно регулирует его донорно-акцепторные свойства.
в) Исключение составляют токсиканты – яды крови, к которым относят и монооксид углерода. Проникая с атмосферным воздухом в лёгкие, СО быстро преодолевает альвеолярно-капиллярную мембрану, растворяется в плазме крови, диффундирует в эритроциты и вступает во взаимодействие с дезоки- и окси-Hb:
|
|
|
|
Образовавшийся карбоксигемоглобиннеспособен присоединять к себе кислород, а угарного газа может связывать 4 молекулы.
г) Важным производным Hb является метгемоглобин, в молекуле которого атом железа находится в степени окисления 3+ (в виде ферри-иона). Такая форма гемопротеида образуется при действии на него различных окислителей (оксидов азота, нитробензола, нитроглицерина, хлоратов, метиленового синего и др.), в результате в крови уменьшается количество функционально важного оксиHb, что нарушает доставку кислорода к тканям, вызывая в них развитие гипоксии.
д) Особенности строения концевых аминокислот в цепях глобина позволяют им реагировать с моносахаридами, в первую очередь, с глюкозой. В настоящее время выделяют несколько подвидов Hb A (от 0 до 1c), в которых к валину бета-цепей прикреплены олигосахариды. Особенно легко реагирует последний подвид гемопротеида. У образовавшегося при этом без участия фермента гликозилированного гемоглобина меняется его сродство к кислороду. Это объясняется тем, что присоединившаяся к белку глюкоза занимает место 2,3-ДФГК, что тормозит подкисление среды и тем самым противодействует диссоциации оксигемоглобина. В норме на долю подобной формы Hb приходится не более 5% от его общего количества. При сахарном диабете его концентрация возрастает в 2-3 раза, что благоприятствует возникновению тканевой гипоксии.
СВОЙСТВА ГЕМОГЛОБИНА
Все известные гемопротеиды (см. выше) имеют сходство в строении не только простетической группы, но и апопротеина. У них общий способ укладки полипептидной цепи вокруг гема плюс одинаковые аминокислоты в отдельных участках (инвариантность) разных нитей. В первую очередь, это касается гистидина, глицина (с помощью последнего обеспечивается тесный контакт между спиралями). Определённая общность в строении обусловливает и сходство в функционировании – взаимодействии с газами, в основном с кислородом.
Главное свойство гемоглобина - способность обратимо связывать в лёгких (до 94%) и эффективно отдавать в тканях кислород. На 1г Hb связывается 1,34 мл О2. Сродство гемоглобина к этому газу меньше, чем у других гемопротеидов. Но поистине уникальным для того белка является сочетание прочности связывания кислорода при высоких его парциальных напряжениях и лёгкости диссоциации этой связи в области пониженных давлений. Кроме того скорость распада оксигемоглобина зависит от температуры, pH среды. При накоплении углекислоты, лактата и других кислых продуктов происходит более быстрая отдача кислорода (эффект Бора). Также действует и лихорадка. При алкалозе, гипотермии следует обратное смещение, улучшаются условия насыщения Hb кислородом в лёгких, но полнота отдачи газа в тканях уменьшается. Подобное явление наблюдается при гипервентиляции, замерзании и т.д.
Попадая в условия острой гипоксии, эритроциты активируют гликолиз, что сопровождается увеличением содержания 2,3-ДФГК, которая снижает сродство гемопротеида к кислороду, активирует дезоксигенацию крови в тканях, что носит приспособительный характер. При уменьшении уровня дифосфоглицерата противоположный эффект делает насыщение гемоглобина кислородом в лёгких более активным. Молекула ДФГК, присоединяясь к дезоксиHb в его центральной полости и образуя солевой мостик между двумя бета-цепями, оказывает весьма сильное влияние на сродство белка к кислороду. В физиологических условиях это свойство определяется величинами парциального давления газа в лёгких. При нахождении в высокогорных районах концентрация дифосфоглицерата в эритроцитах возрастает, а сродство гемоглобина к О2 снижается.
Интересно, что фетальный гемоглобин с ДФГК не взаимодействует, сохраняя поэтому повышенное сродство к кислороду и артериальной, и венозной крови.
МЕТАБОЛИЗМ ЖЕЛЕЗА
Большая часть пула железа в организме локализуется в гемопротеидах, в первую очередь в гемоглобине. Поэтому необходимо кратко остановиться на судьбе ионов этого металла в организме. Железо, находясь в пищевых продуктах, может иметь различные формы: восстановленную и окисленную. Наиболее хорошо всасывается последняя в составе гемина из животных продуктов. Отсюда диеты, богатые мясом, сводят вероятность экзогенного железодефицита к минимуму. В растительных, особенно, зерновых продуктах, до 60% ионов переходного металла находится в трудноусвояемой форме, связанной с фитиновой кислотой. Следует заметить, что биодоступность железа невелика: всасывается в кишечнике не более 10% содержащегося в пище, в основном из продуктов животного происхождения. Особую роль при этом играют нормальная секреция соляной кислоты, протеаз, характер питания (способствуют усвоению сукцинат, аскорбиновая кислота), биогенные эффекторы (эритропоэтин из почек стимулирует абсорбцию железа).
В энтероцитах ферроионы связываются с апоферритином с образованием ферритина (Fe2+). Попавшие по vena porta в печень ионы металла включаются в гликопротеид трансферрин, с помощью которого транспортируются к органам и тканям. После взаимодействия со специфическим рецептором ретикулоцита железо высвобождается из трансферрина и попадает в клетку. Иногда этот процесс осуществляется путём пиноцитоза. В эритроидных клетках железо делится между митохондриями, где включается в гем, и белком ферритином, а в миелоидных – его существенная часть попадает в защитный белок – лактоферрин. Если происходит внутрисосудистый гемолиз, то выделившийся при этом гем связывается с гемопексином (это необходимо вследствие прооксидантных свойств данного порфина) и в таком виде транспортируется в печень, где распадается. После чего ионы железа или вновь используются, или откладываются, или выводятся.
Основным депо этого металла служит ферритин, который накапливается в селезёнке, печени, костном мозге, в меньшей степени – в мышечной ткани (одна молекула белка способна удерживать до 4500 атомов Fe2+). Избыточное количество железа может аккумулироваться в печени и других органах в составе гранул гемосидерина – комплекса белков, полисахаридов, включающих до 3% кристаллов металла. Катаболическая фаза обмена ионов железа заключается в их выведении, в основном в составе желчи через желудочно-кишечный тракт (за сутки в среднем взрослый человек теряет его до 1,5 мг).
Нормой для здорового взрослого человека считается содержание железа в крови 12 – 30 мкмоль/л.