Основные этапы развития физиологии
Основные этапы развития физиологии
Основоположником научной физиологии считается В. Гарвей. В 1628 г. вышла в свет книга «Анатомические исследования движения крови и сердца у живых». Автором было дано описание большого круга кровообращения. Эта дата и считается датой рождения научной физиологии.
В истории развития физиологии можно выделить два больших периода:
1) допавловский;
2) павловский.
Допавловский период продолжался до 1883 г., когда была издана диссертация И. П. Павлова «Центробежные нервы сердца».
Особенности допавловского периода развития физиологии
1. Функция изучалась на отдельных органах, не учитывалась целостность организма.
2. Не изучалось влияние нервной системы на функции организма в целом и отдельных его органов.
3. Не изучалось влияние факторов внешней среды на функциональное состояние организма человека.
4. Господствовал аналитический подход к изучению функций организма.
5. При экспериментах в физиологии применялись только наблюдения и острый опыт.
Особенности павловского периода развития физиологии
1. В физиологии господствует метод хронического эксперимента для изучения функций организма, но острый опыт продолжает существовать.
2. Изучение функций органов происходит на целостном организме.
3. Учитывается влияние нервной системы и гуморальных факторов в регуляции деятельности органов и их систем.
4. Учитывается влияние внешней среды на организм (последние 20 лет).
5. Преобладает системный подход к изучению функций организма и отдельных его органов.
Принципы павловской физиологии
1. Организм – это единое целое, которое обладает способностью к саморегуляции своих функций.
2. Принцип единства организма и внешней среды. Человек тонко приспособлен к той среде, в которой он живет. При изменении условий среды изменяется и организм, возникают болезни, дезадаптация.
3. Принцип нервизма. Нервизм – это направление в физиологии и медицине, которое стремится распространить влияние нервной системы на как можно большее количество функций организма.
Периоды развития нервизма
1. И. М. Сеченов, 1863 г., вышла работа «Рефлексы головного мозга». Основная идея монографии: вся сознательная и бессознательная деятельность человека – это рефлексы головного мозга.
2. В. М. Бехтерев – русский невропатолог и психиатр. Показал, что головной мозг человека участвует в регуляции деятельности всех внутренних органов. За счет головного мозга организм человека целесообразно уравновешен в окружающей среде.
3. В. П. Боткин – русский терапевт. Считал, что различные функции организма человека контролируются нервной системой, а при нарушении функции нервной системы развиваются нейрогенные заболевания, например гипертония, тиреотоксикоз.
4. Павлов – это имя соотносится с высшим этапом развития нервизма. Он считал, что центробежные нервы влияют на функции сердца и роль нервной системы в регуляции кровяного давления; значение нервной системы в регуляции секреторной и моторной функции желудочно-кишечного тракта неоспоримо велико. Также он показал, что нервная система принимает участие в приспособлении организма к новым условиям внешней среды за счет условных рефлексов; основоположник учений о типах нервной деятельности, доказал значение коры больших полушарий в деятельности животного и человека – распорядитель и распределитель деятельности.
Физиологические методы исследования.
Для изучения различных процессов и функций живого организма в физиологии используются методы наблюдения и эксперимента.
Наблюдение - метод получения информации путем непосредственной, как правило, визуальной регистрации физиологических явлений и процессов, происходящих в определенных условиях.
Эксперимент — метод получения новой информации о причинно-следственных отношениях между явлениями и процессами в контролируемых и управляемых условиях. Острым называется эксперимент, реализуемый относительно кратковременно. Хроническим называется эксперимент, протекающий длительно (дни, недели, месяцы, годы).
Метод наблюдения
Сущность этого метода заключается в оценке проявления определенного физиологического процесса, функции органа или ткани в естественных условиях. Это самый первый метод, который зародился еще в Древней Греции. В Египте при мумифицировании трупы вскрывали и жрецы анализировали состояние различных органов в связи с ранее зафиксированными данными о частоте пульса, количестве и качестве мочи и другими показателями у наблюдаемых ими людей.
В настоящее время ученые, проводя исследования методом наблюдений, используют в своем арсенале ряд простых и сложных приборов (наложение фистул, вживление электродов), что позволяет надежнее определить механизм функционирования органов и тканей. Например, наблюдая за деятельностью слюнной железы, можно установить, какой объем слюны выделяется за определенный период суток, ее цвет, густоту и т.д.
Однако наблюдение явления не дает ответа на вопрос, каким образом осуществляются тот или иной физиологический процесс или функция.
Более широко наблюдательный метод применяют в зоопсихологии и этологии.
Экспериментальный метод
Физиологический эксперимент — это целенаправленное вмешательство в организм животного с целью выяснить влияние разных факторов на отдельные его функции. Такое вмешательство иногда требует хирургической подготовки животного, которая может носить острую (вивисекция) или хроническую (экспериментально-хирургическая) форму. Поэтому эксперименты подразделяются на два вида: острый (вивисекция) и хронический.
Экспериментальный метод, в отличие от метода наблюдения, позволяет выяснить причину осуществления какого-то процесса или функции.
Вивисекцию проводили на ранних этапах развития физиологии на обездвиженных животных без применения наркоза. Но начиная с XIX в. в остром эксперименте стали использовать общую анестезию.
Острый эксперимент имеет свои достоинства и недостатки. К достоинствам относится возможность моделировать разные ситуации и получать результаты в относительно короткий срок. К недостаткам относится то, что в остром эксперименте исключается влияние центральной нервной системы на организм при применении общей анестезии и нарушается целостность реагирования организма на разные воздействия. Кроме того, часто животных после острого эксперимента приходится усыплять.
Поэтому позднее были разработаны методы хронического эксперимента, при котором проводят длительное наблюдение за животными после оперативного вмешательства и выздоровления животного.
Академиком И.П. Павловым был разработан метод наложения фистул на полые органы (желудок, кишечник, мочевой пузырь). Использование фистульной методики позволило выяснить механизмы функционирования очень многих органов. В стерильных условиях анестезированному животному выполняют хирургическую операцию, позволяющую получить доступ к определенному внутреннему органу, вживляют фистульную трубку или выводят наружу и подшивают к коже проток железы. Непосредственно опыт начинают после заживления послеоперационной раны и выздоровления животного, когда физиологические процессы приходят в норму. Благодаря этой методике стало возможным длительно изучать картину физиологических процессов в естественных условиях.
Метод эксперимента, как и метод наблюдения, предусматривает использование простой и сложной современной аппаратуры, приборов, входящих в системы, предназначенные для воздействия на объект и регистрации различных проявлений жизнедеятельности.
Изобретение кимографа и разработка метода графической регистрации артериального давления немецким ученым К. Людвигом в 1847 г. открыло новый этап в развитии физиологии. Кимограф позволил осуществлять объективную запись изучаемого процесса.
Позднее были разработаны методы регистрации сокращения сердца и мышц (Т. Энгельман) и методика регистрации изменения сосудистого тонуса (плетизмография).
Объективная графическая регистрация биоэлектрических явлений стала возможной благодаря струнному гальванометру, изобретенному голландским физиологом Эйнтховеном. Ему впервые удалось записать на фотопленке электрокардиограмму. Графическая регистрация биоэлектрических потенциалов послужила основой развития электрофизиологии. В настоящее время электроэнцефалографию широко используют в практике и научных исследованиях.
Важным этапом в развитии электрофизиологии явилось изобретение микроэлектродов. При помощи микроманипуляторов их можно вводить непосредственно в клетку и регистрировать биоэлектрические потенциалы. Микроэлектродная техника позволила расшифровать механизмы генерации биопотенциалов в мембранах клетки.
Немецкий физиолог Дюбуа-Реймон является основоположником метода электрического раздражения органов и тканей с помощью индукционной катушки для дозированного электрического раздражения живых тканей. В настоящее время для этого используют электронные стимуляторы, позволяющие получить электрические импульсы любой частоты и силы. Электростимуляция стала важным методом исследования функций органов и тканей.
К экспериментальным методам относится множество физиологических методов.
Удаление (экстирпация) органа, например определенной железы внутренней секреции, позволяет выяснить ее влияние на различные органы и системы животного. Удаление различных участков коры головного мозга позволило ученым выяснить их влияние на организм.
Современные успехи физиологии были обусловлены использованием радиоэлектронной техники.
Вживление электродов в различные участки мозга помогло установить активность различных нервных центров.
Введение радиоактивных изотопов в организм позволяет ученым изучать метаболизм разных веществ в органах и тканях.
Томографический метод с использованием ядерного магнитного резонанса имеет очень важное значение для выяснения механизмов физиологических процессов на молекулярном уровне.
Биохимические и биофизические методы помогают с высокой точностью выявлять различные метаболиты в органах и тканях у животных в состоянии нормы и при патологии.
Знание количественных характеристик различных физиологических процессов и взаимоотношений между ними позволило создать их математические модели. С помощью этих моделей физиологические процессы воспроизводят на компьютере и исследуют различные варианты реакций.
Натрий - калиевый насос
— это особый белок, пронизывающий всю толщу мембраны, который постоянно накачивает ионы калия внутрь клетки, одновременно выкачивая из нее ионы натрия; при этом перемещение обоих ионов происходит против градиентов их концентраций. Выполнение этих функций возможно благодаря двум важнейшим свойствам этого белка. Во-первых, форма молекулы переносчика может меняться. Эти изменения происходят в результате присоединения к молекуле переносчика фосфатной группы за счет энергии, выделяющейся при гидролизе АТФ (т. е. разложения АТФ до АДФ и остатка фосфорной кислоты). Во-вторых, сам этот белок действует как АТФ-аза (т. е. фермент, гидролизующий АТФ). Поскольку этот белок осуществляет транспорт натрия и калия и, кроме того, обладает АТФ-азной активностью, он так и называется — «натрий-калиевая АТФ-аза».
Упрощенно действие натрий-калиевого насоса можно представить следующим образом.
1. С внутренней стороны мембраны к молекуле белка-переносчика поступают АТФ и ионы натрия, а с наружной — ионы калия.
2. Молекула переносчика осуществляет гидролиз одной молекулы АТФ.
3. При участии трех ионов натрия за счет энергии АТФ к переносчику присоединяется остаток фосфорной кислоты (фосфорилирование переносчика); сами эти три иона натрия также присоединяются к переносчику.
4. В результате присоединения остатка фосфорной кислоты происходит такое изменение формы молекулы переносчика (конформация), что ионы натрия оказываются по другую сторону мембраны, уже вне клетки.
5. Три иона натрия выделяются во внешнюю среду, а вместо них с фосфорилированным переносчиком соединяются два иона калия.
6. Присоединение двух ионов калия вызывает дефосфорилирование переносчика — отдачу им остатка фосфорной кислоты.
7. Дефосфорилирование, в свою очередь, вызывает такую конформацию переносчика, что ионы калия оказываются по другую сторону мембраны, внутри клетки.
8. Ионы калия высвобождаются внутри клетки, и весь процесс повторяется.
Значение натрий-калиевого насоса для жизни каждой клетки и организма в целом определяется тем, что непрерывное откачивание из клетки натрия и нагнетание в нее калия необходимо для осуществления многих жизненно важных процессов: осморегуляции и сохранения клеточного объема, поддержания разности потенциалов по обе стороны мембраны, поддержания электрической активности в нервных и мышечных клетках, для активного транспорта через мембраны других веществ (сахаров, аминокислот). Большие количества калия требуются также для белкового синтеза, гликолиза, фотосинтеза и других процессов. Примерно треть всей АТФ, расходуемой животной клеткой в состоянии покоя, затрачивается именно на поддержание работы натрий-калиевого насоса. Если каким-либо внешним воздействием подавить дыхание клетки, т. е. прекратить поступление кислорода и выработку АТФ, то ионный состав внутреннего содержимого клетки начнет постепенно меняться. В конце концов он придет в равновесие с ионным составом среды, окружающей клетку; в этом случае наступает смерть.
Схема строения нейрона
Аксон — обычно длинный отросток нейрона, приспособленный для проведения возбуждения и информации от тела нейрона или от нейрона к исполнительному органу. Дендриты — как правило, короткие и сильно разветвлённые отростки нейрона, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов), и которые передают возбуждение к телу нейрона. Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами.
Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.
Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик — образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.
Си́напс— место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсы вызывают деполяризацию нейрона, другие — гиперполяризацию; первые являются возбуждающими, вторые — тормозными. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.
Термин был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном.
Классификации синапсов
По механизму передачи нервного импульса
-химический — это место близкого прилегания двух нервных клеток, для передачи нервного импульса через которое клетка-источник выпускает в межклеточное пространство особое вещество, нейромедиатор, присутствие которого в синаптической щели возбуждает или затормаживает клетку-приёмник.
-электрический (эфапс) — место более близкого прилегания пары клеток, где их мембраны соединяются с помощью особых белковых образований — коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе — 3,5 нм (обычное межклеточное — 20 нм). Так как сопротивление внеклеточной жидкости мало(в данном случае), импульсы через синапс проходят не задерживаясь. Электрические синапсы обычно бывают возбуждающими.
-смешанные синапсы — Пресинаптический потенциал действия создает ток, который деполяризует постсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом.
-Наиболее распространены химические синапсы. Для нервной системы млекопитающих электрические синапсы менее характерны, чем химические.
Механизм синаптической передачи.
Под влиянием нервного импульса наступает деполяризация окончаний аксона, что повышает в нем концентрацию Ca, и содержание синаптических пузырьков выбрасывается в синаптическую щель. Медиатор (ацетилхолин) диффундирует в синаптическую щель и связывается с рецепторами постсинаптической мембраны. Действие молекул медиатора ведет к открытию ионных каналов для Naи К, что вызывает возникновение возбуждающего постсинаптического потенциала (ВПСП). В тормозных синапсах, тормозный медиатор (гамма-аминомасляная кислота) открывает в постсинаптической мембране селективные хлорные каналы. При этом возникает тормозный постсинаптический потенциал (ТПСП) .
Медиаторы и модуляторы синаптической передачи по химической структуре медиаторы подразделяют на:
- моноамины (адреналин, норадреналин, ацетилхолин и др.);
- аминокислоты (гамма-аминомасляная кислота (ГАМК), глутамат, глицин, таурин);
- пептиды (эндорфин, нейротензин, бомбезин, энкефалин и др.);
- прочие медиаторы (NO , АТФ).
Амбивалентность действия медиаторов проявляется в том, что один и тот же медиатор в разных синапсах может оказывать различное действие на эффекторную клетку. Результат действия медиатора на постсинаптическую мембрану зависит от того, какие рецепторы и ионные каналы в ней находятся. Если медиатор открывает в постсинаптической мембране Na+ -каналы, то это приводит к развитию ВПСП, если K+ - или Cl – -каналы, то развивается ТПСП. Вследствие этого термины «возбуждающий медиатор» и «тормозный медиатор» неправомерны; следует говорить лишь о возбуждающих и тормозных синапсах.
В синаптическом окончании наряду с медиатором могут синтезироваться и высвобождаться одно или несколько химических веществ. Эти соединения, действуя на постсинаптичекую мембрану, могут повышать или снижать ее возбудимость. Поскольку сами по себе они не могут вызвать возбуждение постсинаптической мембраны, их называют модуляторами синаптической передачи (нейромодуляторами). Большинство нейромодуляторов представляют собой пептиды.
Спинной мозг, его строение.
Спинной мозг – наиболее древнее образование ЦНС. Характерная особенность строения – сегментарность.
Нейроны спинного мозга образуют его серое вещество в виде передних и задних рогов.Они выполняют рефлекторную функцию спинного мозга.
Задние рога содержат нейроны (интернейроны), которые передают импульсы в вышележащие центры, в симметричные структуры противоположной стороны, к передним рогамспинного мозга. Задние рога содержат афферентные нейроны, которые реагируют на болевые, температурные, тактильные, вибрационные, проприоцептивные раздражения.
Передние рога содержат нейроны (мотонейроны), дающие аксоны к мышцам, ониявляются эфферентными. Все нисходящие пути ЦНС двигательных реакций заканчиваютсяв передних рогах.
В боковых рогах шейных и двух поясничных сегментов располагаются нейроны симпатического отдела вегетативной нервной системы, во 2–4-м сегментах – парасимпатического. Аксоны этих нейронов выходят из спинного мозга в составе передних корешков.
В составе спинного мозга имеется множество вставочных нейронов, которые обеспечивают связь с сегментами и с вышележащими отделами ЦНС, на их долю приходится 97 %от общего числа нейронов спинного мозга. В их состав входят ассоциативные нейроны –нейроны собственного аппарата спинного мозга, они устанавливают связи внутри и междусегментами.
Белое вещество спинного мозга образовано миелиновыми волокнами (короткими идлинными) и выполняет проводниковую роль.Короткие волокна связывают нейроны одного или разных сегментов спинного мозга.Длинные волокна (проекционные) образуют проводящие пути спинного мозга. Ониформируют восходящие пути, идущие к головному мозгу, и нисходящие пути (идущие отголовного мозга).
Общая характеристика автономной нервной системы. Строение автономной регуляторной дуги. Медиаторы автономной нервной системы. Пусковые, корригирующие и адаптационно-трофические влияния автономной нервной системы.
Строение рефлекторной дуги:афферентное нервное волокно;эфферентное нервное волокно, серая (соединительная) ветвь; белая (соединительная) ветвь; узел симпатического ствола;передний корешок спинномозгового нерва;нервные окончания; латеральный (боковой) рог;передний рог спинного мозга;передняя срединная щель;задняя срединная борозда,вставочный нейрон;белое вещество;задний рог;задний корешок спинномозгового нерва;чувствительный узел спинномозгового нерва. Сплошной линией показана рефлекторная дуга соматической нервной системы, пунктирной -автономный нервной системы. Рефлекторная дуга - это цепочка нейронов, по которым осуществляется рефлекс, т.е. ответная реакция организма на внешнее или внутреннее воздействие.Простым вариантом рефлекторной дуги является звено из двух нейронов: чувствительного и двигательного. Однако большинство рефлекторных дуг многонейронны, т.е. содержат не менее 3 нервных клеток. Такие рефлекторные дуги называются полисинаптическими. Работа рефлекторной дуги начинается от рецептора. В зависимости от условий функционирования органов вегетативная нервная система оказывает на них корригирующее и пусковое влияние. Если орган обладает автоматией и непрерывно функционирует или «запущен в работу», а импульсы, приходящие по симпатическим или парасимпатическим нервам, только усиливают или ослабляют его деятельность, в таком случае говорят о корригирующем влиянии. Если же работа органа не является постоянной, а возбуждается импульсами, поступающими по симпатическим или парасимпатическим нервам, в этом случае говорят о пусковом влиянии вегетативной нервной системы. Пусковые влияния нередко дополняются корригирующими.
Потребности и их виды.
Потребности – это нужда в чем-либо необходимом для поддержания жизнедеятельности отдельного человека, социальной группы или общества в целом.
К специфической особенности потребностей относится их «необратимость»: с той или иной степенью интенсивности при любой ситуации они изменяются, как правило, в одном направлении – в сторону роста.
Виды потребностей: материальные, духовные, потребности в безопасности.
Многие ученые по-разному классифицировали потребности.
Аристотель делил потребности на первичные и вторичные.
- Первичные: физиологические потребности: потребность в воздухе, пище, воде, жилище и т. д. Потребности в безопасности и защищенности.
-Вторичные: потребность в уважении: потребность в чувстве собственной ценности, уважение и признание со стороны окружающих, обращение членов коллектива за советом и др.Потребность в самовыражении: стремление быть самим собой, возможность реализовать себя в своем деле, овладение новыми знаниями.
Основные этапы развития физиологии
Основоположником научной физиологии считается В. Гарвей. В 1628 г. вышла в свет книга «Анатомические исследования движения крови и сердца у живых». Автором было дано описание большого круга кровообращения. Эта дата и считается датой рождения научной физиологии.
В истории развития физиологии можно выделить два больших периода:
1) допавловский;
2) павловский.
Допавловский период продолжался до 1883 г., когда была издана диссертация И. П. Павлова «Центробежные нервы сердца».