Кровь, ее состав, количество и свойства

ФИЗИОЛОГИЯ КРОВИ

Лекция 1

Кровь, ее состав, количество и свойства

План:

Понятие о системе крови. Основные функции крови. Состав и количество крови.

Плазма крови ее состав и свойства.

Физико-химические свойства крови. Буферные системы.

Эритроциты, их структура, свойства и функции. Гемоглобин, его структура, свойства, разновидности, соединения и функции.

Гемолиз и его виды.

Скорость оседания эритроцитов (СОЭ).

Лейкоциты, их классификация, свойства и функции.

Группы крови. Резус-фактор.

Регуляция системы крови.

Понятие о системе крови

Кровь вместе с тканевой жидкостью и лимфой является важнейшим компонентом внутренней среды организма, относительное постоянство которой, в том числе физико-химических показателей (рН, осмотическое давление, температура, и др.), является необходимым условием жизнедеятельности организма. Изменения физико-химических свойств крови, являющихся важным механизмом в патогенезе многих заболеваний, используются для их диагностики, оценки эффективности лечения и прогноза.

Система крови по предложению Г.Ф. Ланга (1939), включает:

1. Кровь (в сосудах).

2. Органы кроветворения - красный костный мозг, лимфатические узлы, селезенка, тимус.

3. Органы кроверазрушения (печень, костный мозг, селезенка).

4. Регулирующий нейрогуморальный аппарат.

Главным местом образования клеток крови является красный костный мозг. В нем же происходит и разрушение клеток (эритроцитов), реутилизация железа, синтез Hb, а также созревание популяций B-лимфоцитов - факторов гуморального иммунитета.

В тимусе - происходит образование Т-лимфоцитов. Кроме того, в выработке иммунных компонентов принимают участие селезенка, лимфатические узлы и другие лимфоидные образования (пейеровы бляшки, миндалина, червеобразный отросток и др.).

В селезенке - осуществляется лимфоцитопоэз, синтез Ig, разрушение эритроцитов, лейкоцитов, тромбоцитов, депонировании крови.

Основные функции крови

· Транспортная (перенос различных веществ).

· Дыхательная (перенос кислорода от органов дыхания к тканям и СО2 в обратном направлении).

· Трофическая или питательная (перенос питательных веществ от пищеварительного тракта к клеткам организма и использование клетками тканей и органов компонентов крови для пластических и энергетических нужд).

· Экскреторная (перенос к органам выделения ненужных или вредных для организма веществ: конечных продуктов обмена веществ, избытка минеральных и органических веществ, образующихся в процессе обмена, или поступивших с пищей).

· Терморегулирующая (кровь нагревается во внутренних органах, где образуется много тепла, и охлаждается в поверхностных слоях организма.

· Гомеостатическая ( вместе с тканевой жидкостью и лимфой создает внутреннюю среду организма и участвует в поддержании ее постоянства).

· Обеспечивает водно-солевой обмен между кровью и тканями.

· Защитная (содержит факторы гуморального и клеточного иммунитета)

· Коррелятивная - перенос физиологически активных веществ, обеспечивает взаимосвязь между различными органами и тканями, в результате чего организм функционирует как единое целое.

· Поддержание постоянства кислотно-щелочного состояния (за счет карбонатной, фосфатной, белковой и гемоглобиновой буферных систем).

Состав и количество крови.

Кровь состоит из плазмы и форменных элементов (эритроцитов, тромбоцитов, лейкоцитов).

Между объемом плазмы и форменных элементов существует определенное соотношение, которое выражается гематокритным числом. Гематокрит - это часть объема крови, приходящая на долю клеток. В норме у мужчин объем эритроцитов составляет 44 - 46 % , плазмы 54 - 56 % .Для перевода в СИ полученное число умножают на 0,01 и получают величину гематокрита. В норме он равен: у мужчин 0,44 - 0,46, у женщин 0,41 - 0.43. У новорожденных гематокрит на 10 % выше.

Количество крови. У взрослого человека абсолютное количество крови составляет примерно 4,5 – 6 литров. Относительное ее содержание соответствует 6 - 8% массы тела (у новорожденного - 15% ).

Нормальное содержание крови называется нормоволемией. Различают нормоволемию простую, олигоцитемическую и полицитемическую (табл.1).

Простая нормоволемия - нормальное соотношение между объемом форменных элементов и плазмы.

Олигоцитемическая нормоволемия - отмечается при анемии в результате кровопотери, когда объем крови восполнен за счет жидкой части в результате перехода тканевой жидкости, а количество форменных элементов еще не восстановилось.

Полицитемическая нормоволемия - при переливании небольших количеств эритроцитарной массы.

Увеличениеколичества крови (гиперволемия, плетора).

· При вливании большого количества крови.

· При усилении кроветворения (повышается количество эритроцитов).

· При задержке воды в организме (заболевания почек).

· При избыточном приеме воды.

Уменьшение количества крови (гиповолемия).

Таблица 1.

Изменения объема крови

Соотношение форменных элементов и плазмы крои Вид волемии Гематокритное число
  НОРМОВОЛЕМИЯ  
ФЭ 45% плазма 55%
простая в норме
ФЭ 35% плазма 65%
олигоцитемическая снижено
ФЭ ,55% Плазма 45%
полицитемическая повышено
  ГИПОВОЛЕМИЯ  
ФЭ 45% плазма 55%
простая в норме
ФЭ 35% плазма 65%
олигоцитемическая снижено
ФЭ 55% Плазма 45%
полицитемическая повышено
  ГИПЕРВОЛЕМИЯ  
ФЭ 45% плазма 55%
простая в норме
ФЭ 35% плазма 65%
олигоцитемическая снижено
ФЭ 55% плазма45%
полицитемическая повышено

Примечание: ФЭ - форменные элементы.

· При острых кровопотерях.

· При анемии.

· При потере жидкости (дегидратации организма), например, при профузном поносе, неукротимой рвоте.

Виды гиперволемий:

· простая - пропорциональное увеличение форменных элементов и плазмы (при переливании крови). Гематокрит - нормальный.

· олигоцитемическая - увеличение объема крови за счет повышения жидкой ее части (введение кровезамещающих жидкостей, нарушение функции почек) Гематокрит - уменьшен.

· полицитемическая - увеличение объема крови за счет повышения количества форменных элементов (компенсаторный характер у жителей высокогорья). Гематокрит - увеличен.

Виды гиповолемий:

· простая - пропорциональное уменьшение объемов форменных элементов и плазмы (кратковременно при острых кровопотерях). Гематокрит - не изменяется.

· олигоцитемическая - уменьшение объема крови за счет снижения количества форменных элементов после кровопотерь (когда объем крови восполняется за счет поступлением в сосуды тканевой жидкости). Гематокрит - уменьшен.

· полицитемическая - уменьшение объема крови за счет уменьшения объема жидкой части крови (сгущение крови при обезвоживании, например, при профузном поносе, неукротимой рвоте, обильном потении). Гематокрит - увеличен.

По степени участия в циркуляции различают кровь депонированную (45-50%) и циркулирующую (50-55%).

По степени участия в циркуляции различают кровь депонированную (45-50%) и циркулирующую (50-55%).

Депо крови:

· Печень. Депонируется сравнительно большое количество крови (до 20 % от общего ее объема).

· Селезенка. В селезенке может депонироваться (выключаться из кровотока) до 500 мл (10-16 %) крови.

· Кожа. Кровь депонируется в капиллярах и венах (около 10 %). Депонирование крови в коже связано с терморегуляцией.

· Легкие. Депонирование крови за счет изменения объема емкости артерий и вен.

· Венозная система (рассматривается как депо жидкой части крови, вмещающая значительное количество лимфы).

В качестве депо жидкой части крови можно рассматривать лимфу в лимфатических сосудах.

Переход депонированной крови в циркуляцию происходит при:

· Эмоциональном состоянии.

· Физическом напряжении.

· Кислородном голодании (гипоксии).

· Кровопотери.

Значение депо крови. Возможность быстрого увеличения массы циркулирующей крови, необходимой в конкретных условиях для обеспечения потребностей организма в кислороде (при подъеме на высоту, при физической работе и других состояниях, связанных с повышенной потребностью в кислороде).

Кровопотери и их последствия. Для здорового человека однократная потеря 1/3 или даже 1/4 объема циркулирующей крови является угрожающей для жизни (снижение АД, гипоксия). Внезапная потеря 50% крови - смертельна, медленная потеря (в течение нескольких дней) этого же объема крови не является летальной, так как в этих условиях успевают мобилизоваться компенсаторные механизмы, направленные на выравнивание кровяного давления и устранения гипоксии.

К кровопотере особенно чувствительны грудные дети и новорожденные (еще недостаточно развиты компенсаторные механизмы). Чувствительность к кровопотере повышается при наркозе, гипотермии, болевой и психической травме.

Буферные системы крови.

Буферными системами называются растворы, обладающие свойствами достаточно стойко сохранять постоянство концентрации водородных ионов как при добавлении кислот или щелочей, так и при разведении. Они состоят из смеси слабых кислот с солями этих кислот и сильных оснований. Благодаря буферным системам поддерживается активная реакция крови (рН) - важнейший показатель постоянства внутренней среды.

Буферные системы крови:

1.Карбонатная (Н2СО3 + NaHCO3) и (Н2СО3 +KНСО3). Механизм действия карбонатной буферной системы: NaHCO3 диссоциирует на Na+ и НСО3-. Поступившие в кровь кислые компоненты взаимодействует с бикарбонатом. Освободившиеся при этом Н+ соединяются с НСО3- , в результате чего образуется Н2 СО3 (участие фермента карбоангидразы) и нейтральная соль. Угольная кислота диссоциирует на Н2О и СО2 , избыток которых удаляется органами выделения и рН не изменяется.

Поступающие в кровь щелочные компоненты взаимодействуют с Н2СО3, в результате чего образуются соль и Н2О (удаляются органами выделения).

2. Фосфатная (NаН2РО4 + Nа2НРО4). NаН2РО4 обладает свойством кислоты и реагирует со щелочными компонентами, а Nа2НРО4 - свойствами щелочи и реагирует с кислотными компонентами.

3. Белковая. Обусловлена амфотерными свойствами белков плазмы. В кислой среде они ведут себя как основания, в щелочной - как кислоты, связывая в первом случае кислоты, во втором - щелочи.

4. Гемоглобиновая (самая мощная). Восстановленный Нb является более слабой кислотой, чем Н2СО3 и отдает ей ион К+, а сам присоединяет Н+ и становится очень слабодиссоциируемой кислотой.

Буферные системы имеются и в тканях (главными являются белковая и фосфатная).

В процессе обмена веществ кислых продуктов образуется больше, чем основных, поэтому существует опасность сдвига рН в кислую сторону. Подсчитано, что в организме человека в день образуется количество кислот (суммарная кислотность НCl, молочной, пировиноградной, угольной и др. кислот), которое эквивалентно 20 - 30 литрам 1,0н НСl. Но, невзирая на это, организм живет и при этом поддерживается постоянная величина рН. Буферные системы крови и тканей обеспечивают большую устойчивость к действию кислот. Так, для сдвига рН:

· в щелочную сторону - надо прилить щелочи в 40-70 раз больше, чем к такому же объему воды;

· в кислую сторону - надо прилить кислот в 327 раз больше, чем к такому же объему воды.

Щелочные соли слабых кислот, содержащиеся в крови, образуют так называемый щелочной резерв крови. А поскольку в крови существует определенное (довольно постоянное) соотношение между кислотными и щелочными эквивалентами, принято говорить о кислотно-щелочном равновесии крови.

Возможны сдвиги активной реакции крови как в кислую (ацидоз), так и в щелочную (алкалоз) сторону.

По степени выраженности различают ацидоз компенсированный и некомпенсированный.

При компенсированном ацидозе при поступлении кислот в кровь изменения в крови могут ограничиваться лишь уменьшением щелочного резерва без изменений рН. Несмотря на химические и функциональные сдвиги в организме рН поддерживается при действии буферных систем. При истощении щелочного резерва и недостаточности защитных механизмов рН смещается за пределы нормы и развивается некомпенсированный ацидоз.

По происхождению различают:

· газовый ацидоз и газовый алкалоз;

· негазовый ацидоз и негазовый алкалоз.

Газовый ацидоз (дыхательный) - при увеличении в организме углекислоты. Он может возникать при:

· недостаточности функции внешнего дыхания.

· недостаточности кровообращения.

· вдыхании воздуха (смеси) с повышенной концентрацией углекислоты.

Газовый алкалоз (дыхательный) - при гипервентиляции легких в избытке выделяется СО2 (горная болезнь, чрезмерное искусственное дыхание).

Негазовый ацидоз (обменный) - при накоплении в организме кислых продуктов. Такое состояние может возникать при:

· избыточном образовании кислых продуктов при нарушенном обмене веществ (сахарный диабет, голодание).

· нарушении выведения кислых продуктов из организма (нефриты).

· потери организмом оснований (профузный понос, свищи кишечника).

· избыточном введении в организм минеральных веществ (отравление уксусной кислотой).

Негазовый алкалоз (обменный) - при накоплении в организме щелочных продуктов. Такое состояние может возникать при:

· введении в организм большого количества щелочных продуктов (злоупотребление приемом питьевой соды, щелочных вод).

· потере большого количества желудочного сока (неукротимая рвота, желудочный свищ).

· гиперпродукции глюкокортикоидов или лечение препаратами гормонов коры надпочечников. В этом случае ионы К+ в клетках замещаются Н+, что приводит к их нарастанию в клетках, но к снижению в крови.

ФОРМЕННЫЕ ЭЛЕМЕНТЫ КРОВИ

Соединения и функции

Одной из важнейших функций крови является перенос поглощаемого в легких кислорода к органам и тканям и транспорт углекислого газа в обратном направлении.

Ключевую роль в этом процессе играют эритроциты, благодаря содержанию в них красного кровяного пигмента - гемоглобина.

Внутриэритроцитарная локализация Нb:

· Обеспечивает уменьшение вязкости крови.

· Уменьшает онкотическое давление, предотвращая потерю воды тканями.

· Предупреждает потерю Нb при фильтрации крови в почках.

По химической природе - это хромопротеид, состоящий из белка глобина (96%) и простетическая группы гема (4%). Гема содержится 4 группы. Он представляет собой протопорфирин, в центре которого расположен ион Fe++.

Содержание Fe у человека 4 - 5 г, из них в:

Нb - до 73% ;

ферментах - 16% ;

плазме крови - 0,1%.

Ключевую роль в деятельности Нb играет ион Fe++.

Функции гемоглобина:

· Транспорт О2 в виде оксигемоглобина (HHbO2). Одна молекула Нb присоединяет 4 молекулы кислорода. 1г Нb связывает 1,34мл О2

· Транспорт СО2 . В тканях карбаминовой связью присоединяет СО2 и в виде карбогемоглобина (HHbСО2) переносит его к легким.

· Участвует в поддержании кислотно-щелочного состояния (ге-моглобиновый буфер).

Соединения Нb:

1. Оксигемоглобин (НHbО2). Гемоглобин, присоединивший 4О2. В артериальной крови его содержится около 98%, а в венозной - около 60%. После отдачи О2 НHb получил название восстановленный, редуцированный гемоглобин или дезоксигемоглобин). Гемоглобин обладает высоким сродством к кислороду. Показателем сродства является Р50 - напряжение О2 в мм рт.ст., при котором 50% оксигемоглобина отдало О2 (в норме Р50 равно 27 мм рт. ст.). Снижение данного показателя свидетельствует об уменьшении сродства гемоглобина к кислороду, а увеличение его - о повышении сродства.

2.Карбогемоглобин (НHbСО2 ) - соединение гемоглобина с СО2.

3. Метгемоглобин (MetHb). Образуется под влиянием сильных оки-слителей (перманганат калия, анилин, нитриты, пирогаллол и др). При этом Fe++ превращается в Fe+++. Соединение прочное. Появляются дегенеративно измененные эритроциты, часть из них гемолизируется. При 66% насыщения крови MtHb наступает острая гипоксия.

4. Карбоксигемоглобин (НHbCО) - соединение гемоглобина с угарным газом (СО). Соединение в 150 - 200 раз прочнее НHbО2. При содержании во вдыхаемом воздухе 0,1% СО 80% Нb превращается в карбоксигемоглобин. При содержании 1% - гибель через несколько минут. В норме в крови содержится примерно 1% НHbCO. У курильщиков - до 3%, после глубокой затяжки - до 10%. При слабых отравлениях вдыхание чистого кислорода значительно ускоряет реакцию отщепления СО (в 20 раз и более).

Физиологическими соединениями Hb являются оксигемоглобин и карбогемоглобин.

5. Солянокислый гематин или гемин (образуется при взаимодействии с соляной кислотой). При высушивании образуются кристаллы специфической формы, свойственной только данному соединению. Используется в криминалистике для обнаружения пятен крови (проба Тейхмана) и в гемометрах Сали в качестве стандартного раствора (16,7г/% или 167 г/л).

Миоглобин - дыхательный пигмент или мышечный гемоглобин содержится в скелетных мышцах, миокарде. Обладает большим сродством к кислороду по сравнению с гемоглобином. Связывает до 14% О2 в организме. Его роль заключается в обеспечении кислородом мышцу в период ее сокращения, когда происходит пережатие капилляров и кровоток через ткань прекращается. В этот период главным источником кислорода является миоглобин, который затем в фазу расслабления мышц и восстановления кровотока опять “запасается” кислородом.

Синтез Нb происходит в эритробластах и нормобластах в костном мозге.

Превращения Hb в организме включают отщепление гема и образование свободного билирубина в клетках мононуклеарной фагоцитарной системы ® транспорт свободного билирубина белками крови ® превращение в печени свободного билирубина в связанную форму ® выделение его в желчный капилляр в виде желчного пигмента и с желчью в кишечник ® в виде стеркобилина, выделяется с калом. Часть билирубина выделяется с мочой (уробилин.).

При кровоизлияниях из Hb образуется белковый комплекс коллоидной формы окиси Fe - гемосидерин. Это железосодержащий пигмент ржаво-коричневого цвета.

Состояние сниженного количества Hb в единице объема крови (чаще всего при одновременном снижении количества эритроцитов) получило название анемия.

Анемия для мужчин при содержании Hb меньше 130г/л, для женщин - меньше 120г/л (при беременности - меньше 110г/л).

Причины возникновения анемий:

· Кровопотери (постгеморрагические).

· Нарушение кровообразования.

· Повышенное кроворазрушения (гемолиз).

Разновидности Hb:

· HbP - (примитивный) - на 7-12 неделе внутриутробного развития.

· HbF - фетальный (плодный) - на 9-й неделе внутриутробного развития.

· HbA - гемоглобин взрослых - появляется перед рождением.

НbF - обладает большим сродством с О2 и насыщается на 60% при таком рО2 , когда HbA матери только на 30%. Благодаря данному свойству HbF вполне обеспечивает кислородом ткани плода в условиях сравнительно низкого рО2 в артериальной крови плода. В течение 1 года жизни HbF почти полностью заменяется HbA.

Известен вид анемии - талассемия, при которой нарушен синтез HbA, но высокое содержание HbA и HbF. Эритроциты имеют вид мишени, сильно прокрашиваются по периферии и в центре. При серповидноклеточной анемии выделен гемоглобин S, отличающийся от гемоглобина А наличием в бета-цепи вместо остатка глютаминовой кислоты остатка валина.

В норме содержание Hb в крови мужчин колеблется в пределах 130 - 160г/л , в крови женщин - 115 - 145 г/л. Общее содержание Hb в крови 700 г.

Для оценки степени насыщенности эритроцитов гемоглобином вычисляют цветовой показатель (ЦП).

Кровь, ее состав, количество и свойства - student2.ru

В норме ЦП = 0,8 -1,0 (нормохромные).

ЦП < 0.8 - гипохромные (при анемии).

ЦП > 1.0 - гиперхромные.

Критерием насыщения эритроцитов гемоглобином является среднее его содержание в 1 эритроците (СГЭ), рассчитанное следующим образом:

Кровь, ее состав, количество и свойства - student2.ru Кровь, ее состав, количество и свойства - student2.ru Кровь, ее состав, количество и свойства - student2.ru Кровь, ее состав, количество и свойства - student2.ru

Кровь, ее состав, количество и свойства - student2.ru

В норме СГЭ равно 27 - 31 пг.

Гемолиз и его виды

Гемолиз - разрушение оболочки эритроцитов, сопровождающееся выходом Hb в плазму (лаковая кровь).

Виды гемолиза:

1. Механический (in vivo при разможжении тканей, in vitro при встряхивании крови в пробирке).

2. Термический (in vivo при ожогах, in vitro при замораживании и оттаивании или нагревании крови)

3. Химический (in vivo под влиянием химических веществ, при вдыхании паров летучих веществ (ацетон, бензол, эфир, дихлорэтан, хлороформ), растворяющих оболочку эритроцитов, in vitro под влияние кислот, щелочей, тяжелых металлов и др.).

4. Электрический (in vivo при поражении электрическим током, in vitro при пропускании электрического тока через кровь в пробирке). На аноде (+) гемолиз кислотный, на катоде (-) - щелочной.

5. Биологический. Под влиянием факторов биологического происхождения (гемолизины, яд змей, грибной яд, простейшие (молярийный плазмодий).

6. Осмотический. В гипотонических растворах у человека начало в 0,48% растворе NaCl, а в 0,32% - полный гемолиз эритроцитов.

Осмотическая резистентность эритроцитов (ОРЭ) - устойчивость их в гипотонических растворах.

Различают:

· минимальнальную ОРЭ - концентрация раствора NaCl, при которой начинается гемолиз (0,48-0,46%). Гемолизируются менее устойчивые.

· максимальную ОРЭ - концентрация раствора NaCl, в котором гемолизируются все эритроциты (0,34-0,32%).

Осмотическая резистентность эритроцитов зависит от степени их зрелости и формы. Форма эритроцитов характеризуется соотношением между их толщиной и диаметром, что получило название индекса сферичности. В норме он равен 0,27 - 0,28.

При его повышении (при гемолитической анемии) появляются шаровидные эритроциты (сфероидные). Их резистентность и продолжительность жизни снижается на 12 - 14 дней. Сфероидную форму приобретают эритроциты, завершающие жизненный цикл.

Молодые формы эритроцитов, поступающие из костного мозга в кровь, наиболее устойчивы к гипотонии. В особенности это относится к менее зрелым клеткам (ретикулоциты, полихроматофилы), для которых характерны уплощенная дисковидная форма и малый индекс сферичности.

Поскольку молодые формы эритроцитов осмотически более устойчивы, то величина осмотической резистентности эритроцитов в определенной степени характеризует интенсивность эритропоэза, а следовательно, гемопоэтическую активность красного костного мозга.

7. Иммунный гемолиз - при переливании несовместимой крови или при наличии иммунных антител к эритроцитам.

8. Физиологический - гемолиз эритроцитов, закончивших свой срок жизни (в печени, селезенке, красном костном мозге).

Группы крови

Еще в 1901 году Карл Ландштейнер наблюдал, что при смешивании крови разных людей в одних случаях происходило склеивание (агглютинация) эритроцитов, в других - она отсутствовала. Дальнейшие его исследования, а также Я. Янского позволили установить группы крови, которые отличаются друг от друга по наличию или отсутствию в эритроцитах антигенов (агглютиногенов) и антител (агглютининов) в плазме (табл.4). Агглютиногены эритроцитов (А и В),

Таблица 4.

Группы крови системы АВО

Группы Эритроциты Плазма или сыворотка
крови Агглютиногены Агглютинины
I (0) a , b
II (A) A b
III (B) B a
IV (AB) AB

представляют собой полисахаридно-аминокислотые комплексы. С ними взаимодействуют специфические антитела (агглютинины a и b), растворенные в плазме, являющиеся по своей природе g-глобулинами. Они имеют 2 центра связывания, что обеспечивает возможность образования мостика между двумя эритроцитами и таким образом образовывать конгломераты (агглютинаты) эритроцитов.

В норме у каждого человека отсутствуют агглютинины к соответствующим агглютиногенам, т. е. у каждого человека существует индивидуальный набор эритроцитарных агглютиногенов.

У новорожденных в крови отсутствуют антитела системы АВО и образование их к антигенам, которых у него нет, происходит в течение первого года жизни.

При переливании крови подбирают такую кровь, чтобы избежать встречи одноименных агглютиногенов донора с агглютининами реципиента. Агглютинины донора в расчет не принимаются, так как происходит разведение (разбавление) их кровью реципиента и они не могут вызвать агглютинации его эритроцитов (при переливании небольших количеств крови 200-500 мл). При переливании больших количеств (4-5 л) плазмы крови 0 (I) группы в кровь реципиента поступает уже большое их количество и эффект разведения теряется, а поэтому агглютинины донора могут вызвать агглютинация эритроцитов реципиента.

Как правило, переливают только одногруппную кровь. При ее отсутствии в экстренных случаях переливание крови проводят по следующей схеме совместимости различных групп крови.

Таблица 5.

Совместимость различных групп крови

Группа Группа эритроцитов
сыворотки I(0) II(A) III(B) IV(AB)
I a, b - + + +
II b - - + +
III a - + - +
IV - - - -
           

Примечание: “+” - наличие агглютинации (групповая несовместимость).

“-” - отсутствие агглютинации (групповая совместимость).

Лица, имеющие I (0) группу крови, называются универсальными донорами, имеющие IV(АВ) группу - универсальными реципиентами.

Чтобы избежать осложнений при переливании крови:

· Определяют групповую принадлежность с применением стандартных сывороток I, II и III групп путем смешивания капли из каждой из них с каплей исследуемой крови. По наличию и отсутствии агглютинации в них определяют групповую принадлежность. Для избежания ошибок определение групповой принадлежности проводят при температуре в помещении 15-250С. При температуре выше 250С реакция агглютинации замедляется, а при температуре ниже 150С возможна холодовая агглютинация. Капля вносимой в сыворотку крови должна быть в 3-5 раз меньше объема капли сыворотки, чтобы не снизить титра содержащихся в них агглютининов. В случае получения нечетких результатов определение групповой принадлежности крови проводят повторно с сыворотками другой серии. При получении повторного сомнительного результата проводят прямую и обратную пробы со стандартными сыворотками и стандартными эритроцитами.

· Эритроциты донора смешивают на стекле с плазмой или сывороткой реципиента при 370С. Это так называемая прямая проба. Ее цель - определить наличие в сыворотке реципиента антител к эритроцитам донора. Если агглютинации нет, то проводят обратную пробу.

· Эритроциты реципиента помещают в сыворотку донора. Цель - выявление в сыворотке донора антител к эритроцитам реципиента (обратная проба).

· Проводят биопробу. Вначале струйно внутривенно вводят 10-15 мл донорской крови и в течение 3-5 мин наблюдают нет ли каких либо клинических проявлений реакций или осложнений (учащение ЧСС, дыхания, одышка, затрудненное дыхание, гиперемия лица и др.). Такое введение повторяют трижды. При отсутствии каких-либо осложнений вводят остальную часть крови.

Существуют разновидности агглютиногена А: А0, А1, А2, А3, А4, А5, Аz и др. Из них самым сильным является А1. Поэтому при слабоактивных сыворотках, содержащих агглютинин a, кровь таких лиц может быть ошибочно отнесена к I (0) группе.

У людей с I(0) группой крови в плазме содержатся анти-А и анти-В иммунные агглютинины, т.е. a и b. Переливание такой крови в больших количествах недопустимо, так как в этих случаях аглютинины донора уже не разводятся плазмой реципиента и они могут вызвать агглютинацию эритроцитов реципиента. Кроме того, у лиц с I(0) группой крови на поверхности мембран эритроцитов имеется антиген Н, который доступен для взаимодействия с анти-Н-антителами, довольно часто встречающимися в плазме крови II(A) и IV(АВ) групп и несколько реже III(В) группы. В этих случаях переливание крови I(0) группы лицам, имеющим другие группы крови, может привести к гемотрансфузионным осложнениям. Поэтому универсальных доноров называют опасными универсальными донорами.

Наличие Н-антигена на поверхности мембран эритроцитов послужило основанием обозначать систему АВО как АВН.

Агглютиноген В также существует в нескольких вариантах.

Распространенность людей с группами крови: I(0) - 40-50% , II(А) - 30 - 40% , III(В) - 10-20%, IV(АВ) - 5%.

География: 40 % людей Центральной Европы имеют группу крови II(А), 90% Северной Америки - I (0), более 20% Центральной Азии - III(В). I (0) группа крови имеется у всех народов, II(А) - преобладает у жителей Европы, Ближнего Востока, Китая, Японии. Людей с III(В) группой крови меньше всех, с IV(АВ) - преобладают жители Индии, Центральной Азии, долины Нила. III(В) группы крови нет у аборигенов Америки и Австралии, II(А) - нет у Южно-африканских народов. 100% индейцев Южной Америки имеют I(0) группу крови.

Кроме агглютиногенов А и В (системы АВ0) известно еще более 400 других агглютиногенов, 140 из которых (M, N, S, P, Di, C, K, Ln, Le, Fy, Ik и др.) составляют почти 20 групп или систем.

Из них можно отметить системы: MNSS, P, Лютеран, Келл, Льюис, Даффи, Кидд, Диего и др. Например, система Келл-Челлано состоит из 2-х аглютиногенов К и к. Образуют 3 группы КК, кк и Кк. Данная система крови имеется у 100% людей.

К счастью, антигенные свойства большинства этих антигенов выражены слабо и при переливании крови ими пренебрегают. Однако, эти системы имеют значение при частых переливаниях крови, приводящих к накоплению этих антигенов и проявлению их действия. Поэтому повторно переливать кровь одного и того же донора не рекомендуется.

Наряду с агглютининами в плазме крови содержатся гемолизины (обозначаемые аналогично агглютининам a и b). Они при встрече с одноименным агглютиногеном вызывают гемолиз эритроцитов. Их действие проявляется при температуре 37-400С и уже через 30 - 40с наступает гемолиз эритроцитов (при определении групповой принадлежности крови со стандартными сыворотками агглютинация эритроцитов не сопровождается гемолизом, так как процесс протекает при комнатной температуре).

Следует отметить, что агглютиногены могут покидать эритроциты и выходить в плазму. Такие агглютиногены получили название антиагглютиногены и обозначаются теми же буквами, как и агглютиногены в эритроцитах (А и В). Их взаимодействие с агглютининами реципиента при переливании небольшого количества крови не представляет опасности.

Резус-фактор

Резус-фактор (Rh) открыт в 1940 Ландштейнером и Винером. Установлено, что у 85% людей в крови содержится данный фактор, у 15% он отсутствует. Людей, в крови которых имеется резус-фактор, принято называть резус-положительными (Rh+), а при его отсутствии - резус-отрицательными (Rh _).

Резус-фактор включает 6 основных антигенов C, D, E, c, d, e. Из них самым активным является D (обладает повышенными антигенными свойствами).

При переливании Rh+ крови Rh - человеку, то образование аглютининов у такого реципиента происходит медленно (в течение нескольких месяцев). Поэтому при однократном переливании гемотрансфузионных осложнений не происходит. При повторном - возникает резус-конфликт c серьезными гемотрансфузионными осложнениями: образование конгломератов эритроцитов и их гемолиз, интенсивное внутрисосудистое свертывание крови (при разрушении эритроцитов освобождаются факторы свертывания крови), повреждаются многие органы, но особенно почки, в которых сгустками закупоривается “чудесная сеть” клубочков, что препятствует образованию мочи, создающее угрозу жизни.

Важно учитывать резус-принадлежность матери при беременности. Если плод унаследует Rh-положительную кровь от отца, а мать будет Rh-отрицательная, то в этом случае в организме матери будут образовываться антитела на Rh+ эритроциты плода. Образование Rh у плода появляется только с 3-го месяца внутриутробной жизни и достигает активности к концу беременности. За этот период организм матери не успевает сенсибилизироваться. Образование антирезус - аглютининов идет медленно (3 - 5 мес.). Поэтому при первой беременности осложнений почти не наблюдается. При повторной имеется угроза резус - конфликта, при котором эритроциты плода разрушаются, что может привести к его внутриутробной гибели.

При легкой форме новорожденные имеют гемолитическую желтуху. Но известны случаи, когда активность материнского организма настолько велика к Rh плода, что вызывает развитие гемолитической болезни новорожденного даже при первой беременности. В этом случае проводят обменное переливание крови: вливается 400 мл и одновременно выпускается 350 мл.

Для подавления образования антител к Rh в организме матери проводят анти-D-профилактику, т.е. непосредственно после родов роженице вводят иммунную сыворотку, содержащую анти-D-глобулин, который разрушает Rh+ эритроциты плода, попавшие в кровь матери, т.е. разрушается фактор, вызывающий образование антител и их накопление.

При переливании крови возникает опасность заражения инфекционными заболеваниями (гепатит В, ВИЧ-инфекция и др.) Заражение происходит:

а) при переливании инфицированной крови;

б) при использовании плохо простерилизованных инструментов (с остатками инфицированной крови). Для заражения достаточно ничтожно малого количества крови или сыворотки. Возможность инфицирования уменьшается при использовании одноразовых инструментов.

Регуляция системы крови

Эритропоэз. Схема эритропоэза: стволовая клетка крови (СКК) ® полипотентный предшественник миелопоэза (КОК-ГЭММ) ® взрывообразующая единица эритропоэза (ВОЕ-Э) ® унипотентный предшественник эритропоэза (КОК-Э) ® проэритробласт ® базофильный, полихроматофильный, оксифильный эритробласт ® ретикулоцит ® эритроцит.

Нейрогуморальная регуляция эритропоэза. Необходимо полноценное питание с достаточным поступлением с водой и пищей железа. В костный мозг оно также поступает из разрушенных эритроцитов. Железо является лимитурующим фактором. При его недостатке развивается железодефицитная а

Наши рекомендации