Морфология и культуральные свойства стафилококков
Выделение чистых культур
микроорганизмов. Чистой культурой называют такую культуру, которая содержит микроорганизмы одного вида. Выделение чистых культур бактерий - обязательный этап бактериологического исследования в лабораторной диагностике инфекционных болезней, в изучении микробной загрязненности различных объектов окружающей среды, и, в целом, при любой работе с микроорганизмами. Исследуемый материал (гной, мокрота, фекалии, кровь и другой материал от больных; вода, почва, воздух, пищевые продукты, трупы животных и человека, переносчики) обычно содержит ассоциации микробов. Выделение чистой культуры позволяет изучить морфологические, культуральные , биохимические, антигенные и другие признаки, по совокупности которых определяется видовая и типовая принадлежность возбудителя, то есть производится его идентификация. Для выделения чистых культур микроорганизмов используют методы, которые можно разделить на несколько групп. 1Метод Пастера - последовательное разведение исследуемого материала в жидкой питательной среде до концентрации одной клетки в объеме (имеет историческое значение).
Действие антибиотиков на микроорганизмы. Микроорганизмы подвержены действию не только физических и химических, но и биологических факторов. Биологические факторы, обладающие свойством воздействовать на микроорганизмы, весьма разнообразны. Все живые существа объединены в устойчивые экологические системы – биоценозы. Для каждого биоценоза характерно видовое и количественное соотношение популяций, их структуры и взаимоотношения. Среди большого количества биоценозов особое место занимают микробиоценозы – сообщества (ассоциации) микроорганизмов. Взаимоотношения между отдельными видами микроорганизмов в пределах одного сообщества могут быть различными и проявляться в форме синергизма, сателлизма, антагонизма и др.
По происхождению антибиотики подразделяют на шесть групп:
1. Антибиотики, образуемые грибами и лишайниками. К этой группе относят пенициллин, гризеофульвин, цефалоспорин, усниновая кислота.
2. Антибиотики, продуцируемые актиномицетами. К этой группе относят стрептомицин, неомицин, канамицин, хлортетрациклин, хлорамфеникол, эритромицин, тилозин, нистатин.
3. Антибиотики, продуцируемые бактериями. Эта группа менее обширна, чем группа антибиотиков грибного и актиномицетного происхождения. Способностью продуцировать антибиотики обладают в большинстве своем сапрофитные бактерии, обитающие в почве. К этой группе относят колицин, грамицидин, пиоционин, субтилин, полимиксин. Некоторые из этих антибиотиков токсичны при парэнтеральном введении и применяются местно.
4. Антибиотики животного происхождения. К этой группе относят вещества, образуемые тканями животных: эритрин, выделяемый из эритроцитов некоторых животных; экмолин, полученный из тканей рыб; лизоцим, интерферон.
5. Антибиотики растительного происхождения. Многие растения способны синтезировать летучие и нелетучие вещества, обладающие бактерицидным и бактериостатическим действием на микроорганизмы. Такие соединения называют фитонцидами. Фитонциды призваны обеспечить защиту растений от возбудителей различных заболеваний. Некоторые фитонциды выделены в чистом виде. Например, аллицин – из чеснока, рафанин – из семян редиса, иманин – из зверобоя.
6. Синтетические антибиотики, полученные искусственно путем биосинтеза.
По механизму действия выделяют четыре основные группы антибиотиков:
1. Антибиотики, ингибирующие синтез пептидогликана клеточной стенки (пенициллины, цефалоспорины).
2. Антибиотики, нарушающие функцию цитоплазматической мембраны (грамицидин, полиены).
3. Антибиотики, разрушающие рибосомальные субчастицы и сдерживающие синтез белка (тетрациклины, амино-гликозиды, макролиды).
4. Антибиотики, избирательно подавляющие синтез нуклеиновых кислот (гризеофульвин, неомицин, новобиоцин).
В основе лечения с помощью антибиотиков лежит сложная иммунобиологическая реакция и, применяя антибиотики необходимо помнить об их иммунодепрессивных свойствах. Прежде чем назначить тот или иной антибиотик, необходимо знать его свойства, способ введения, спектр и механизм действия, срок сохранения в организме и пути выведения из организма. При несоблюдении правил применения антибиотиков могут возникнуть тяжелые последствия – токсикозы, морфофункциональные изменения в желудочно-кишечном тракте. Многие антибиотики обладают нейротоксическим, гепатотоксическим, нефротоксическим действием, угнетают функции эндокринной и кроветворной систем. При продолжительном приеме антибиотиков угнетается нормальная микрофлора организма, развиваются дисбактериозы. Одновременно начинает развиваться нечувствительная к антибиотику микрофлора, вызывая развитие суперинфекций (кандидозы). При неправильном применении антибиотиков утрачивается чувствительность возбудителей инфекционных заболеваний к применяемым препаратам, образуются антибиотико-резистентные формы микроорганизмов. В таких случаях применения антибиотиков с лечебной целью становится бессмысленным.
2Метод Коха («пластинчатые разводки») - последовательное разведение исследуемого материала в расплавленном агаре (температура 48-50 ° С), с последующим разливом в чашки Петри, где агар застывает. Высевы делают, как правило, из трех-четырех последних разведений, где бактерий становится мало и, в дальнейшем, при росте на чашках Петри появляются изолированные колонии, образующиеся из одной исходной материнской клетки. Из изолированных колоний в глубине агара получают чистую культуру бактерий пересевом на свежие среды.
3Метод Шукевича - применяется для получения чистой культуры протея и других микроорганизмов обладающих «ползущим» ростом. Посев исследуемого материала производят в конденсационную воду у основания скошенного агара . Подвижные микробы (протей) способны подниматься вверх по скошенному агару , неподвижные формы остаются расти внизу на месте посева. Пересевая верхние края культуры можно получить чистую культуру.
4Метод Дригальского - широко применяется в бактериологической практике, при этом исследуемый материал разводят в пробирке стерильным физиологическим раствором или бульоном. Одну каплю материала вносят в первую чашку и стерильным стеклянным шпателем распределяют по поверхности среды. Затем этим же шпателем (не прожигая его в пламени горелки) делают такой же посев во второй и третьей чашках. С каждым посевом бактерий на шпателе остается все меньше и меньше и, при посеве на третью чашку, бактерии будут распределяться по поверхности питательной среды отдельно друг от друга. Через 1-7 сут выдерживания чашек в термостате (в зависимости от скорости роста микроорганизмов) на третьей чашке каждая бактерия дает клон клеток, образуя изолированную колонию, которую пересевают на скошенный агар с целью накопления чистой культуры. 5Метод Вейнберга . Особые трудности возникают при выделении чистых культур облигатных анаэробов. Если контакт с молекулярным кислородом не вызывает сразу же гибели клеток, то посев производят по методу Дригальского , но после этого чашки сразу помещают в анаэростат . Однако чаще пользуются методом разведения. Сущность его заключается в том, что разведения исследуемого материала проводят в расплавленной и охлажденной до 45-50 ° С агаризированной питательной среде. Делают 6-10 последовательных разведений, затем среду в пробирках быстро охлаждают и заливают поверхность слоем смеси парафина и вазелинового масла, чтобы помешать проникновению воздуха в толщу питательной среды. Иногда питательную среду после посева и перемешивания переносят в стерильные трубки Бурри или капиллярные пипетки Пастера, концы которых запаивают. При удачном разведении в пробирках, трубках Бурри , пипетках Пастера вырастают изолированные колонии анаэробов. Чтобы изолированные колонии хорошо были видны, используют осветленные питательные среды. Для извлечения изолированных колоний анаэробов, пробирку слегка нагревают, вращая ее над пламенем, при этом агар , прилегающий к стенкам, плавится и содержимое пробирки в виде агарового столбика выскальзывает в стерильную чашку Петри. Столбик агара разрезают стерильным пинцетом и извлекают колонии петлей. Извлеченные колонии помещают в жидкую среду, благоприятную для развития выделяемых микроорганизмов (например, среду Китта-Тароцци ). Агаризированную среду из трубки Бурри выдувают, пропуская газ через ватную пробку. 6Метод Хангейта - когда хотят получить изолированные колонии бактерий с особенно высокой чувствительностью к кислороду (ст рогие аэробы) используют метод вращающихся пробирок Хангейта . Для этого расплавленную агаризированную среду засевают бактериями при постоянном токе через пробирку инертного газа, освобожденного от примеси кислорода. Затем пробирку закрывают резиновой пробкой и помещают горизонтально в зажим, вращающий пробирку, среда при этом равномерно распределяется по стенкам пробирки и застывает тонким слоем. Применение тонкого слоя в пробирке, заполненной газовой смесью, позволяет получить изолированные колонии, хорошо видимые невооруженным глазом. 6Выделение отдельных клеток с помощью микроманипулятора . Микроманипулятор - прибор, позволяющий с помощью специальной микропипетки или микропетли извлекать одну клетку из суспензии. Эту операцию контролируют под микроскопом. На предметном столике микроскопа устанавливают влажную камеру, в которую помещают препарат «висячая капля». В держателях операционных штативов закрепляют микропипетки ( микропетли ), перемещение которых в поле зрения микроскопа осуществляется с микронной точностью благодаря системе винтов и рычагов. Исследователь, глядя в микроскоп, извлекает отдельные клетки микропипетками и переносит их в пробирки со стерильной жидкой средой для получения клона клеток.
Дрожжи(дрожжевые грибки) представляют собою одноклеточные неподвижные микроорганизмы. Они широко распространены в природе в виде так называемых диких дрожжей. Дикие дрожжи имеют удлиненную колбасовидную или шаровидную форму. Они наносят вред хозяйству, вызывая порчу различных продуктов (вина, пива и др.). Многие дрожжи находят применение в промышленности и с этой целью выращиваются и культивируются человеком. Такие дрожжи называются культурными. Промышленное значение дрожжей заключается в том, что они способны сбраживать сахар, превращая его в спирт и углекислый газ. Это свойство дрожжей используется в производстве хлеба, спирта, различных вин, пива, кваса, молочнокислых продуктов (кефира, кумыса) и др. Дрожжи отличаются высоким содержанием белков и витаминов (В, D, Е), поэтому применяются для пищевых и кормовых целей как источники этих веществ. Строение дрожжей. Клетки дрожжей имеют шаровидную, яйцевидную или эллипсоидную форму. Иногда встречаются дрожжицилиндрической формы. В процессе развития дрожжевой клетки форма ее может изменяться. Форма дрожжей зависит также и от условий внешней среды, в которой они развиваются. Размеры дрожжевых клеток составляют 10-15 миллимикрон. Дрожжевая клетка состоит из протоплазмы, ядра и оболочки. Внутри клетки имеются различные включения в виде капелек жира, зерен гликогена и др. В отличие от остальных микроорганизмов дрожжи размножаются почкованием. Они могут размножаться, также спорообразованием, а иногда и делением клетки пополам. Почкование заключается в том, что на материнской клетке образуется бугорок (почка), который постепенно увеличивается в размерах, растет. Между почкой и производящей ее клеткой появляется перетяжка. Канал, соединяющий материнскую и вновь формирующуюся клетку, постепенно суживается и, наконец, дочерняя клетка полностью отделяется от материнской. При почковании часть ядра, протоплазмы и других клеточных элементов материнской клетки переходит в дочернюю. В благоприятных условиях процесс почкования длится около двух часов. Нередко молодые клетки не отшнуровываются от материнской, а остаются вместе с ней. При этом происходит почкование и молодых клеток. В результате образуется целое скопление соединенных между собой клеток, напоминающее мицелий плесневых грибов. Этот мицелий называется ложным, он легко разрушается. Многие дрожжи способны размножаться и путем спорообразования. Споры образуются внутри дрожжевой клетки, количество их колеблется от двух до двенадцати. Спорообразование происходит бесполым или половым путем. При бесполом образовании спор ядро клетки дробится, каждая частица его окружается веществом протоплазмы и покрывается оболочкой, превращаясь таким образом в спору. Образование спор при половом размножении происходит в результате слияния двух клеток. Споры имеют чаще всего круглую или овальную форму. Они более устойчивы к внешним воздействиям, чем вегетативные клетки, и появление их связано с ухудшением условий обитания. Дрожжи, способные размножаться почкованием и спорообразованием, называются истинными. Некоторые дрожжи не способны к спорообразованию и размножаются только путем почкования. Такие дрожжи называются ложными. Систематика дрожжей основана на различии их способов размножения и физиологических признаков. Дрожжи подразделяются на два семейства: сахаромицеты и несахаромицеты. Сахаромицеты. Они объединяют истинные дрожжи, к числу которых относятся культурные дрожжи, используемые в промышленности (пекарские, винные, винокуренные и др.). Дрожжи сахаромицес церевизи имеют шаровидную или яйцевидную форму, используют их для получения винного спирта, в пивоварении, квасоварении и хлебопечении. Дрожжи, обладающие высокой энергией брожения и подъемной силой и способные быстро размножаться, применяются в хлебопечении. Дрожжи сахаромицес эллипсоидес имеют эллипсоидную форму и применяются в виноделии. Несахаромицеты. Эти микроорганизмы включают в себя ложные дрожжи. Многие из них являются вредителями различных производств. Среди этих дрожжей наиболее важны дрожжи родов торула и микодерма. Дрожжи рода торула имеют шаровидную форму и способны вызывать слабое спиртовое брожение. Торула кефир применяется для приготовления молочнокислых продуктов, содержащих спирт (кефира и кумыса), а торула утилис- для получения пищевых и кормовых дрожжей. Дрожжи рода микодерма представляют собой удлиненные клетки. Они не способны вызывать спиртовое брожение, но могут окислять спирт, а также органические кислоты в углекислый газ и воду. Развиваясь на поверхности алкогольных напитков, микодерма образует морщинистые пленки и придает напиткам неприятный вкус и запах. Микодерма вызывает порчу молочнокислых продуктов, квашеных овощей, наносит вред в производстве уксуса и пекарских дрожжей.
Дыхание микроорганизмов. У микроорганизмов существует два типа биологического окисления: аэробный и анаэробный. При аэробном типе участвует кислород, и этот процесс называется дыханием в строгом смысле слова. При анаэробном типе биологического окисления освобождение энергии из органических молекул происходит без участия кислорода и называется брожением. Начальный этап анаэробного расщепления глюкозы с образованием пировиноградной кислоты (ПВК) происходит одинаково. Эта кислота является тем центральным пунктом, от которого расходятся пути дыхания и многих видов брожений. При аэробном типе дыхания пировиноградная кислота вступает в цикл трикарбоновых кислот. Водород ПВК поступает в дыхательную цепь. Это цепь окислительных ферментов (цитохромы и цитохромоксидаза). По цепи цитохромов передается водород и присоединяется к активированному под действием цитохромоксидазы кислороду с образованием воды. Конечные продукты аэробного окисления глюкозы - диоксид углерода (углекислота) и вода. В процессе дыхания на одну молекулу глюкозы образуется 38 молекул АТФ. При анаэробном типе биологического окисления энергия образуется в результате брожений. При спиртовом брожении ПВК превращается в конечном итоге в спирт и углекислоту. Конечным продуктом молочнокислого брожения является молочная кислота, маслянокислого брожения - масляная кислота. При процессах брожения на одну молекулу глюкозы образуется только 2 молекулы АТФ. Микробную природу брожений впервые открыл и доказал Пастер. Изучая маслянокислое брожение, Пастер впервые столкнулся с возможностью жизни без кислорода, то есть с анаэробиозом. Он также установил явление, которое впоследствии было названо "эффектом Пастера": прекращение процесса брожения при широком доступе кислорода. Анаэробиоз существует только среди прокариотов. Все микроорганизмы по типу дыхания делятся на следующие группы: облигатные аэробы, облигатные анаэробы, факультативные анаэробы, микроаэрофилы. Облигатные аэробы размножаются только при наличии свободного кислорода. К ним можно отнести микобактерии туберкулеза, холерный вибрион, чудесную палочку. Облигатные или строгие анаэробы получают энергию при отсутствии доступа кислорода. Они имеют неполный набор окислительно-восстановительных ферментов, у них нет цитохромной системы, поэтому у них не происходит полного окисления субстрата (глюкозы) до конечных продуктов - СО2 и Н2О. Более того, в присутствии свободного кислорода образуются токсические соединения: перекись водорода Н2О2 и свободный перекисный радикал кислорода О2. Аэробы при этом не погибают, так как продуцируют ферменты, разрушающие эти токсические соединения (супероксиддисмутазу и каталазу). Спорообразующие анаэробы в этих условиях прекращают размножение и превращаются в споры. Неспорообразующие анаэробы погибают даже при кратковременном контакте с кислородом. К облигатным спорообразующим анаэробам относятся клостридии столбняка, ботулизма, анаэробной раневой инфекции; к неспорообразующим анаэробам - бактероиды, пептобактерии, бифидумбактерии. Большинство патогенных бактерий - факультативные (условные) анаэробы, например, энтеробактерии. Они имеют полный набор ферментов и при широком доступе кислорода окисляют глюкозу до конечных продуктов; при низком содержании кислорода они вызывают брожение. Микроаэрофилы размножаются в присутствии небольших количеств кислорода. Например, кампилобактеры могут размножаться при 3-6% кислорода.
Иммунитет.В отличие от видового, приобретенный иммунитет формируется в ответ на действие генетически чужеродного агента (антигена), это антигензависимый иммунитет. Он специфичен по отношению к антигену. Так, человек, переболевший корью, приобретает иммунитет только против кори; человек, получивший прививку против дифтерии, приобретает невосприимчивость только к дифтерии. Приобретенный иммунитет не передается по наследству, он является индивидуальным. Сила и продолжительность иммунного ответа регулируется генами иммунного ответа. Виды и формы приобретенного иммунитета. В зависимости от способа формирования различают виды приобретенного иммунитета. Активный иммунитет вырабатывается организмом в ответ на антиген. Вследствие перенесенного инфекционного заболевания вырабатывается активный естественный (постинфекционный) иммунитет. В ответ на введение вакцины или анатоксина - активный искусственный (поствакцинальный) иммунитет. Под влиянием антигена в организме происходит активная перестройка иммунной системы. В результате образуются антитела, которые соединяются с микробами или их токсинами, обезвреживая их или усиливая фагоцитоз. Постинфекционный иммунитет может быть пожизненным или длиться годами, как при кори, коклюше, брюшном тифе, дифтерии. Повторные заболевания возможны, но редко. Непродолжителен иммунитет при гриппе. Поствакцинальный иммунитет формируется не сразу, а через некоторое время (дни, недели) после введения вакцины или анатоксина, сохраняется при применении живых вакцин несколько лет, убитых - до одного года. Пассивно приобретенный иммунитет возникает, если организм получает от другого, иммунного организма, готовые антитела. При введении иммунных сывороток создается искусственный (постсывороточный) иммунитет. Например, при лечении ребенка, больного дифтерией, путем введения ему сыворотки крови лошади, иммунизированной дифтерийным токсином. Пассивно приобретенный иммунитет, в отличие от активного, создается быстро, но сохраняется недолго. Пассивный естественный иммунитет создается, когда антитела передаются от матери плоду через плаценту (плацентарный иммунитет) или ребенку с материнским молоком Благодаря этому грудные дети в первые месяцы жизни невосприимчивы к некоторым инфекционным болезням, например, к кори, дифтерии. При некоторых заболеваниях, например, при туберкулезе, сифилисе иммунитет поддерживается сохранившимися в организме возбудителями Такой иммунитет называют нестерильным. Местный иммунитет - это особый вид защиты против внедрения в организм возбудителей инфекций, главным образом кишечных и воздушно-капельных. Большую роль здесь играют неспецифические факторы и антитела, так называемые секреторные иммуноглобулины класса A. При антибактериальном иммунитете защитные силы организма направлены на уничтожение бактерий, при антитоксическом -антитела-антитоксины нейтрализуют бактериальные экзотоксины. Этот вид иммунитета имеет большое значение при токсинемнческих инфекциях, таких, как дифтерия, столбняк, ботулизм, газовая анаэробная инфекция. Противовирусный иммунитет обеспечивает нейтрализацию вирионов или подавление их образования. Противоопухолевый иммунитет направлен против опухолей. Трансплантационный иммунитет возникает вследствие несовместимости тканей при трансплантации.
История развития микробиологии и вирусологии. Микробиология — наука о живых организмах, невидимых невооруженным глазом (микроорганизмах): бактерии, архебактерии, микроскопические грибы и водоросли, часто этот список продляют простейшими и вирусами. Разделы микробиологии: бактериология, микология, вирусология и т. д. Основные этапы развития микробиологии, вирусологии и иммунологии, к ним относятся: 1.Эмпирических знаний ( до изобретения микроскопов и их применения для изучения микромира). Дж.Фракасторо (1546г.) предположил живую природу агентов инфекционных заболеваний. 2.Морфологический период Антони ван Левенгук в 1675г. впервые описал простейших, в 1683г.- основные формы бактерий. Несовершенство приборов (максимальное увеличение микроскопов X300) и методов изучения микромира не способствовало быстрому накоплению научных знаний о микроорганизмах. 3.Физиологический период (с 1875г.) Л. Пастер - изучение микробиологических основ процессов брожения и гниения, развитие промышленной микробиологии, выяснение роли микроорганизмов в кругообороте веществ в природе, открытие анаэробных микроорганизмов, разработка принципов асептики, методов стерилизации, ослабления (аттенуации) вирулентности и получения вакцин (вакцинных штаммов). Р. Кох - метод выделения чистых культур на твердых питательных средах, способы окраски бактерий анилиновыми красителями, открытие возбудителей сибирской язвы, холеры (запятой Коха), туберкулеза (палочки Коха), совершенствование техники микроскопии. Экспериментальное обоснование критериев Хенле, известные как постулаты (триада) Хенле- Коха. 4.Иммунологический период. И.И. Мечников - “поэт микробиологии” Он создал новую эпоху в микробиологии - учение о невосприимчивости (иммунитете), разработав теорию фагоцитоза и обосновав клеточную теорию иммунитета. 12 февраля 1892г. Д.И.Ивановский сообщил, что возбудителем мозаичной болезни табака является фильтрующийся вирус. Эту дату можно считать днем рождения вирусологии, а Д.И. Ивановского - ее основоположником. Впоследствии оказалось, что вирусы вызывают заболевания не только растений, но и человека, животных и даже бактерий. Однако только после установления природы гена и генетического кода вирусы были отнесены к живой природе. 5. этапом в развитии микробиологии стало открытие антибиотиков. В 1929г. А.Флеминг открыл пенициллин и началась эра антибиотикотерапии, приведшая к революционному прогрессу медицины. В дальнейшем выяснилось, что микробы приспосабливаются к антибиотикам, а изучение механизмов лекарственной устойчивости привело к открытию второго- внехромосомного (плазмидного) генома бактерий. 6. Современный молекулярно-генетический этап развития микробиологии, вирусологии и иммунологии начался во второй половине 20 века в связи с достижениями генетики и молекулярной биологии, созданием электронного микроскопа. В опытах на бактериях была доказана роль ДНК в передаче наследственных признаков. Микробиология и вирусология как фундаментальные биологические науки также включают ряд самостоятельных научных дисциплин со своими целями и задачами: общую, техническую (промышленную), сельскохозяйственную, ветеринарную и имеющую наибольшее значение для человечества медицинскую микробиологию и вирусологию.
Кишечная палочка.Кишечная палочка, подвижная палочковидная бактерия, обитающая в кишечнике животных и человека. Обнаруживается в почве и водоемах. Патогенные формы - возбудители кишечных болезней (коли-инфекций). Классический объект молекулярно-генетических исследований. Кишечная палочка (Escherichia coli) - один из представителей нормальной кишечной флоры, сапрофит толстого кишечника. Условно-патогенные и патогенные серотипы кишечной палочки вызывают различные формы инфекционного процесса. Escherichia coli, один из членов группы кишечных бактерий, индикатор фекального загрязнения. Escherichia coli - это грам-отрицательные палочковидные бактерии, принадлежащие к семейству Enterobacteriaceae, роду Escherichia (эшерихия). Названы в честь открывшего их в 1885 году немецкого ученого Т. Эшериха (T. Escherich) E.coli является обычным обитателем кишечника многих млекопитающихся, в частности, приматов, к числу которых принадлежит и человек. Поэтому ее часто называют кишечной палочкой. В организме человека E.coli выполняет полезную роль, подавляя рост вредных бактерий и синтезируя некоторые витамины. Бактерии группы кишечной палочки не устойчивы к высокой температуре, при 60°С гибель их наступает через 15 минут, при 100°С - мгновенно. Сохраняемость кишечной палочки при низких температурах и в различных субстратах внешней среды изучена недостаточно. По некоторым данным в воде и почве кишечная палочка может сохраняться несколько месяцев. Обычные дезинфецирующие вещества (фенол, формалин, сулема, едкий натр, креолин, хлорная известь и др.) в общепринятых разведениях быстро убивают кишечную палочку. Кишечные заболевания, вызываемые патогенными E.coli объединяются общим названием эшерихиозы. Используются также термины коли-инфекция, коли-энтерит, диарея путешественников, колибактериоз (в основном в ветеринарии). Эшерихиоз относится к острым кишечным заболеваниям с фекально-оральным механизмом заражения. Каждый из вышеперечисленных классов патогенных E.coli характеризуется определенными различиями в протекании болезни, которая по своим симптомам может напоминать холеру или дизентерию. Инкубационный период длится 3-6 дней (чаще 4-5 дней). E.Coli входят в состав нормальной кишечной флоры не только человека, но и крупного рогатого скота, свиней. Молодняк последних часто заражается колибактериозом и, соответственно, их мясо (говядина или свинина) может служить источником заражения. Подвержены этому заболеванию и домашние животные (собаки, кошки), однако основным способом заражение является все-таки фекальное загрязнение питьевой воды или продуктов питания (листья салатов, зелень, помидоры, огурцы идр.). Кишечная палочка (Escherichia coli) — полезный обитатель желудочно-кишечного тракта (ЖКТ) животных и человека. У человека в здоровой микрофлоре количество E.coli не превышает 1% от общего числа кишечных микроорганизмов. Функции кишечной палочки в организме: 1 Кишечные палочки предотвращают заселение кишечника другими условно патогенными бактериями. 2 E.coli создают условия для существования бифидо— и лактобактерий, забирая из просвета кишечника кислород. 3 Кишечные палочки вырабатывают витамины группы В и витамин К, участвуют в обмене холестерина, жирных кислот и билирубина, влияют на всасывание кальция и железа.
Классификация вирусов. Если вирусы действительно являются мобильными генетическими элементами, получившими «автономию» (независимость) от генетического аппарата их хозяев (разных типов клеток), то разные группы вирусов (с разным геномом, строением и репликацией) должны были возникнуть независимо друг от друга. Поэтому построить для всех вирусов единую родословную, связывающую их на основе эволюционных взаимоотношений, невозможно. Принципы «естественной» классификации, используемые в систематике животных, не подходят для вирусов. Тем не менее система классификации вирусов необходима в практической работе, и попытки ее создания предпринимались неоднократно. Наиболее продуктивным оказался подход, основанный на структурно-функциональной характеристике вирусов: чтобы отличить разные группы вирусов друг от друга, описывают тип их нуклеиновой кислоты (ДНК или РНК, каждая из которых может быть одноцепочечной или двухцепочечной), ее размеры (число нуклеотидов в цепочке нуклеиновой кислоты), число молекул нуклеиновой кислоты в одном вирионе, геометрию вириона и особенности строения капсида и наружной оболочки вириона, тип хозяина (растения, бактерии, насекомые, млекопитающие и т.д.), особенности вызываемой вирусами патологии (симптомы и характер заболевания), антигенные свойства вирусных белков и особенности реакции иммунной системы организма на внедрение вируса. В систему классификации вирусов не вполне укладывается группа микроскопических возбудителей болезней, называемая вироидами (т.е. вирусоподобными частицами). Вироиды вызывают многие распространенные среди растений болезни. Это мельчайшие инфекционные агенты, лишенные даже простейшего белкового чехла (имеющегося у всех вирусов); они состоят только из замкнутой в кольцо одноцепочечной РНК.
Клостридия. К клостридиям относят большое количество видов бактерий, число которых постоянно возрастает. Это один из самых крупных родов среди эубактерий . Принадлежность к роду определяется на основании только трех признаков: 1 способности образовывать эндоспоры; 2 облигатно анаэробного характера энергетического метаболизма; 3 неспособности осуществлять диссимиляционное восстановление сульфата. Большинство видов грамположительные, подвижные. Движение осуществляется с помощью перитрихиально расположенных жгутиков . По мере старения в процессе цикла развития клетки теряют подвижность, накапливают гранулезу (запасное вещество типа крахмала) и переходят к спорообразованию. Образующиеся споры овальной или сферической формы. Диаметр их, как правило, превышает диаметр вегетативной клетки, поэтому, если формирующаяся спора расположена в центре клетки, последние меняют форму, становясь веретеновидными; если же споры образуются у одного из клеточных концов, клетки приобретают форму барабанных палочек. Клостридии - облигатные анаэробы. Однако спектр их чувствительности к молекулярному кислороду достаточно широк, что связано с обнаружением в клетках большинства клостридиев супероксиддисмутазы и с другими приспособлениями на уровне клеточных популяций, помогающими нейтрализовать токсические эффекты О2 и его производных. Именно при работе с клостридиями Л.Пастер в 1861 г. открыл форму жизни без кислорода. В состав рода Clostridium входят палочки, отличающиеся от рода Bacillus формой спорообразования и облигатно анаэробным способом существования. Источник энергии в большинстве случаев - маслянокислое брожение. Большинство бактерий рода Clostridium - сапрофиты , обитатели почвы. Некоторые виды живут в кишечнике человека и животных. К этому роду относятся весьма опасные патогенные формы: Сlostridium tetani - возбудитель столбняка, Сlostridium perfringens и некоторые другие виды клостридиев - возбудители газовой гангрены , Сlostridium botulinum - продуцент экзотоксина, одного из самых сильных биологических ядов. Бактерии рода Clostridium, грамположительные спорообразующие облигатные анаэробы , повсеместно распространены в природе. Этот род насчитывает более 60 видов, многие из которых являются сапрофитами . Некоторые виды клостридий патогенны для человека и животных, особенно если они попадают в анаэробные условия. Один из самых распространенных видов - Clostridium perfringens . Эта бактерия неподвижна, имеет капсулу и на питательных средах споры образует редко. При кипячении споры гибнут. Clostridium ramosum по распространенности немногим уступает Clostridium perfringens . Эти два вида повсеместно обнаруживаются в почве. Клостридии грамположительны, но в материале, полученном от больных, а также в стареющих культурах нередко бывают грамотрицательными. Поэтому результаты микроскопии окрашенных по Граму мазков следует оценивать с осторожностью. Клостридиальные нетравматические , клостридиальные травматические и клостридиальные системные инфекции чаще всего вызывает Clostridium perfringens , далее по частоте следуют Clostridium novyi и Clostridium septicum . При клостридиальных пищевых отравлениях и клостридиальных кишечных инфекциях важное значение имеют Clostridium difficile - возбудитель псевдомембранозного колита , и Clostridium perfringens , вызывающая пищевую токсикоинфекцию и некротический энтерит . Столбняк - острая раневая инфекция человека и животных, развивающейся в результате поражения токсином нейромоторный клеток спинного и головного мозга, проявляется развитием тонических и тетанических сокращений мышц. Возбудитель - Clostridium tetani - тонкий, длинный, подвижный микроб с терминальной круглой спорой, которая придает ему вид барабанной палочки. Источником столбнячных клостридий являются животные (овцы, лошади, козы, коровы, свиньи), в кишечнике которых они постоянно находятся в составе нормальной микрофлоры. С фекалиями животных микробы попадают в почву, переходят в споров форму и сохраняются годами. Болезнь развивается лишь тогда, когда возбудитель проникает в организм через поврежденную кожу, мышцы, слизистую оболочку при ранениях, инъекциях, ожогах, обморожениях, пролежнях и т.п.. Микробиологические исследования с целью диагностики столбняка проводят редко.
Культивирование вирусов
Вирусы – микроорганизмы, составляющие царство Vira.
Отличительные признаки:
1) содержат лишь один тип нуклеиновой кислоты (РНК или ДНК);
2) не имеют собственных белоксинтезирующих и энергетических систем;
3) не имеют клеточной организации;
4) обладают дизъюнктивным (разобщенным) способом репродукции (синтез белков и нуклеиновых кислот происходит в разных местах и в разное время);
5) облигатный паразитизм вирусов реализуется на генетическом уровне;
6) вирусы проходят через бактериальные фильтры.
Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).
Основные методы культивирования вирусов:
1) биологический – заражение лабораторных животных. При заражении вирусом животное заболевает. Если болезнь не развивается, то патологические изменения можно обнаружить при вскрытии. У животных наблюдаются иммунологические сдвиги. Однако далеко не все вирусы можно культивировать в организме животных;
2) культивирование вирусов в развивающихся куриных эмбрионах. Куриные эмбрионы выращивают в инкубаторе 7—10 дней, а затем используют для культивирования. В этой модели все типы зачатков тканей подвержены заражению. Но не все вирусы могут размножаться и развиваться в куриных эмбрионах.
В результате заражения могут происходить и появляться:
1) гибель эмбриона;
2) дефекты развития: на поверхности оболочек появляются образования – бляшки, представляющие собой скопления погибших клеток, содержащих вирионы;
3) накопление вирусов в аллантоисной жидкости (обнаруживают путем титрования);
4) размножение в культуре ткани (это основной метод культивирования вирусов).
Различают следующие типы культур тканей:
1) перевиваемые – культуры опухолевых клеток; обладают большой митотической активностью;
2) первично трипсинизированные – подвергшиеся первичной обработке трипсин<