Возбудитель дифтерии. Таксономия и характеристика.

Различают гифальные и дрожжевые формы грибов.

Гифальные(плесневые) грибы образуют ветвящиеся тонкие нити (гифы), сплетающиеся в грибницу, или мицелий (плесень). Гифы, врастающие в питательный субстрат, называются вегетативными гифами (отвечают за питание гриба), а растущие над поверхностью субстрата — воздушными или репродуктивными гифами (отвечают за бесполое размножение).

Гифы низших грибов не имеют перегородок. Они представлены многоядерными клетками и называются ценоцитными.

Гифы высших грибов разделены перегородками, или септами с отверстиями.

Дрожжевыегрибы (дрожжи), в основном, имеют вид отдельных овальных клеток (одноклеточные грибы). По типу полового размножения они распределены среди высших грибов — аскомицет и базидиомицет. При бесполом размножении дрожжи образуют почки или делятся, что приводит к одноклеточному росту. Могут образовывать псевдогифы и ложный мицелий (псевдомицелий) в виде цепочек удлиненных клеток — «сарделек». Грибы, аналогичные дрожжам, но не имеющие полового способа размножения, называют дрожжеподобными. Они размножаются только бесполым способом — почкованием или делением.

Грибы размножаются спорами половым и бесполым способами, а также вегетативным путем (почкование или фрагментация гиф). Грибы, размножающиеся половым и бесполым путем, относятся к совершенным. Несовершенными называют грибы, у которых отсутствует половой путь размножения. Бесполое размножение осуществляется у грибов с помощью эндогенных спор, созревающих внутри круглой структуры — спорангия, и экзогенных спор — конидий, формирующихся на кончиках плодоносящих гиф.

Возбудители гепатитов А и Е. Таксономия.

Острая инфекционная болезнь, с лихорадкой, поражением печени. Антропоноз.

Таксономия, морфология, антигенная структура:Семейство Picornaviridae род Hepatovirus. Типовой вид —имеет один серотип. Это РНК-содержащий вирус, просто организованный, имеет один вирусоспецифический антиген.

Культивирование:Вирус выращивают в культурах клеток. Цикл репродукции более длительный, чем у энтеровирусов, цитопатический эффект не выражен.

Резистентность:Устойчивостью к нагреванию; инактивируется при кипячении в течение 5 мин. Относительно устойчив во внешней среде (воде).

Эпидемиология.Источник-больные. Механизм заражения — фекально-оральный. Вирусы выделяются с фекалиями в начале клинических проявлений. С появлением желтухи интенсивность выделения вирусов снижается. Вирусы передаются через воду, пищевые продукты, руки.

Болеют преимущественно дети в возрасте от 4 до 15 лет.

Патогенез:Обладает гепатотропизмом. После заражения репликация вирусов происходит в кишечнике, а оттуда через портальную вену они проникают в печень и реплицируются в цитоплазме гепатоцитов. Повреждение гепатоцитов возникает в результате иммунопатологических механизмов.

Клиника.Инкубационный период - от 15 до 50 дней. Начало острое, с повышением т-ры и тошнотой, рвотой). Возможно появление желтухи на 5-й день. Клиническое течение заболевания легкое, без особых осложнений. Продолжительность заболевания 2 нед. Хронические формы не развиваются.

Иммунитет.После инфекции - стойкий пожизненный иммунитет, связанный с IgG. В начале заболевания в крови IgM, которые сохраняются в организме в течение 4 месяцев и имеют диагностическое значение. Помимо гуморального, развивается и местный иммунитет в кишечнике.

Микробиологическая диагностика.Материал для исследования - сыворотка и испражнения. Диагностика основана главным образом на определении в крови IgM с помощью ИФА, РИА и иммунной электронной микроскопии. Этими же методами можно обнаружить вирусный антиген в фекалиях. Вирусологическое исследование не проводят.

Лечение.Симптоматическое.

Профилактика.Неспецифическая профилактика. Для специфической пассивной профилактики используют иммуноглобулин. Иммунитет сохраняется около 3 мес. Для специфической активной профилактики – инактивированная культуральная концентрированная вакцина. Рекомбинантная генно – инженерная вакцина.

Гепатит Е

Антропоноз, фекально – оральным механизмом передачи.

Таксономия: семейство Caliciviridae. Недавно переведен из семейства в группу гепатит Е-подобных вирусов.

Структура.Вирион безоболочечный, сферический.. Геном — однонитевая плюс-РНК, которая кодирует РНК-зависимую РНК-полимеразу, папаинподобную протеазу и трансмембранный белок, обеспечивающий внедрение вируса в клетку.

Эпидемиология, клиника.Основной путь передачи — водный. Инкубационный период 2—6 недели. Поражение печени, интоксикацией, желтухой.

Иммунитет.После перенесенного заболевания стойкий.

Микробиологическая диагностика:1) серологический метод — в сыворотке, плазме крови с помощью ИФА определяют: антитела к вирусу (анти-HEV IgM, анти-HEV IgG); 2) молекулярно-генетический метод — применяют ПЦР для определения РНК вируса (HEV RNA) в кале и в сыворотке крови больных в острой фазе инфекции.

Лечение.Симптоматическое. Беременным рекомендуется введение специфического иммуноглобулина.

Профилактика.Неспецифическая профилактика - улучшение санитарно-гигиенических условий и снабжение качественной питьевой водой. Созданы неживые цельновирионные вакцины, разрабатываются рекомбинантные и живые вакцины.

Билет№13

Типы и механизмы питания бактерий.

Типы питания.Микроорганизмы нуждаются в углеводе, азоте, сере, фосфоре, калии и других элементах. В зависимости от источников углерода для питания бактерии делятся на аутотрофы, использующие для построения своих клеток диоксид углерода С02 и другие неорганические соединения, и гетеротрофы, питающиеся за счет готовых органических соединений. Аутотрофными бактериями являются нитрифицирующие бактерии, находящиеся в почве; серобактерии, обитающие в воде с сероводородом; железобактерии, живущие в воде с закисным железом, и др.

Гетеротрофы, утилизирующие органические остатки отмерших организмов в окружающей среде, называются сапрофитами. Гетеротрофы, вызывающие заболевания у человека или животных, относят к патогенным и условно-патогенным. Среди патогенных микроорганизмов встречаются облигатные и факультативные паразиты (от греч. parasitos — нахлебник). Облигатные паразиты способны существовать только внутри клетки, например риккетсии, вирусы и некоторые простейшие.

В зависимости от окисляемого субстрата, называемого донором электронов или водорода, микроорганизмы делят на две группы. Микроорганизмы, использующие в качестве доноров водорода неорганические соединения, называют литотрофны-ми (от греч. lithos — камень), а микроорганизмы, использующие в качестве доноров водорода органические соединения, — органотрофами.

Учитывая источник энергии, среди бактерий различают фототрофы, т.е. фотосинтезирующие (например, сине-зеленые водоросли, использующие энергию света), и хемотрофы, нуждающиеся в химических источниках энергии.

Механизмы питания.Поступление различных веществ в бактериальную клетку зависит от величины и растворимости их молекул в липидах или воде, рН среды, концентрации веществ, различных факторов проницаемости мембран и др. Клеточная стенка пропускает небольшие молекулы и ионы, задерживая макромолекулы массой более 600 Д. Основным регулятором поступления веществ в клетку является цитоплазматическая мембрана. Условно можно выделить четыре механизма проникновения питательных веществ в бактериальную клетку: это простая диффузия, облегченная диффузия, активный транспорт, транслокация групп.

Наиболее простой механизм поступления веществ в клетку — простая диффузия, при которой перемещение веществ происходит вследствие разницы их концентрации по обе стороны цитоплазматической мембраны. Вещества проходят через липид-ную часть цитоплазматической мембраны (органические молекулы, лекарственные препараты) и реже по заполненным водой каналам в цитоплазматической мембране. Пассивная диффузия осуществляется без затраты энергии.

Облегченная диффузия происходит также в результате разницы концентрации веществ по обе стороны цитоплазматической мембраны. Однако этот процесс осуществляется с помощью молекул-переносчиков, локализующихся в цитоплазматической мембране и обладающих специфичностью. Каждый переносчик транспортирует через мембрану соответствующее вещество или передает другому компоненту цитоплазматической мембраны — собственно переносчику. Белками-переносчиками могут быть пермеазы, место синтеза которых — цитоплазматическая мембрана. Облегченная диффузия протекает без затраты энергии, вещества перемещаются от более высокой концентрации к более низкой.

Активный транспорт происходит с помощью пермеаз и направлен на перенос веществ от меньшей концентрации в сторону большей, т.е. как бы против течения, поэтому данный про цесс сопровождается затратой метаболической энергии (АТФ), образующейся в результате окислительно-восстановительных реакций в клетке.

Перенос (транслокация) групп сходен с активным транспортом, отличаясь тем, что переносимая молекула видоизменяется в процессе переноса, например фосфорилируется.

Выход веществ из клетки осуществляется за счет диффузии и при участии транспортных систем.

Антителообразование: первичный и вторичный ответ.

Способность к образованию антител появляется во внутриутробном периоде у 20-недельного эмбриона; после рождения начинается собственная продукция иммуноглобулинов, которая увеличивается до наступления зрелого возраста и несколько снижается к старости. Динамика образования антител имеет различный характер в зависимости от силы антигенного воздействия (дозы антигена), частоты воздействия антигена, состояния организма и его иммунной системы. При первичном и повторном введении антигена динамика антителообразования также различна и протекает в несколько стадий. Выделяют латентную, логарифмическую, стационарную фазу и фазу снижения.

В латентной фазе происходят переработка и представление антигена иммунокомпетентным клеткам, размножение клона клеток, специализированного на выработку антител к данному антигену, начинается синтез антител. В этот период антитела в крови не обнаруживаются.

Во время логарифмической фазы синтезированные антитела высвобождаются из плазмоцитов и поступают в лимфу и кровь. В стационарной фазе количество антител достигает максимума и стабилизируется, затем наступает фаза снижения уровня антител. При первичном введении антигена (первичный иммунный ответ) латентная фаза составляет 3—5 сут, логарифмическая — 7— 15 сут, стационарная — 15—30 сут и фаза снижения — 1—6 мес и более. Особенностью первичного иммунного ответа является то, что первоначально синтезируется IgM, а затем IgG. В отличие от первичного иммунного ответа при вторичном введении антигена (вторичный иммунный ответ) латентный период укорочен до нескольких часов или 1—2 сут, логарифмическая фаза характеризуется быстрым нарастанием и значительно более высоким уровнем антител, который в последующих фазах длительно удерживается и медленно, иногда в течение нескольких лет, снижается. При вторичном иммунном ответе в отличие от первичного синтезируются главным образом IgG.

Такое различие динамики антителообразования при первичном и вторичном иммунном ответе объясняется тем, что после первичного введения антигена в иммунной системе формируется клон лимфоцитов, несущих иммунологическую память о данном антигене. После повторной встречи с этим же антигеном клон лимфоцитов с иммунологической памятью быстро размножается и интенсивно включает процесс антителогенеза. Очень быстрое и энергичное антителообразование при повторной встрече с антигеном используется в практических целях при необходимости получения высоких титров антител при производстве диагностических и лечебных сывороток от иммунизированных животных, а также для экстренного создания иммунитета при вакцинации.

Требования, предъявляемые к питательным средам.

Любая питательная среда должна отвечать следующим требованиям: содержать все необходимые для размножения микроорганизмов вещества в легкоусвояемой форме; иметь оптимальные влажность, вязкость, рН, быть изотоничной и по возможности прозрачной. Каждую питательную среду стерилизуют определенным способом в зависимости от ее состава.

Токсины бактерий, их природа, свойства, получение.

Важную роль в развитии инфекционного процесса играют токсины. По биологическим свойствам бактериальные токсины делятся на экзотоксины и эндотоксины. Экзотоксиныпродуцируют как грамположительные, так и грамотрицательные бактерии. По своей химической структуре это белки. По механизму действия экзотоксина на клетку различают несколько типов: цитотоксины, мембранотоксины, функциональные блокаторы, эксфолианты и эритрогемины. Механизм действия белковых токсинов сводится к повреждению жизненно важных процессов в клетке: повышение проницаемости мембран, блокады синтеза белка и других биохимических процессов в клетке или нарушении взаимодействия и взаимокоординации между клетками. Экзотоксины являются сильными антигенами, которые и продуцируют образование в организме антитоксинов. По молекулярной организации экзотоксины делятся на две группы:• экзотоксины состоящие из двух фрагментов; • экзотоксины, составляющие единую полипептидную цепь.

По степени связи с бактериальной клетки экзотоксины делятся условно на три класса. • Класс А - токсины, секретируемые во внешнюю среду;

• Класс В - токсины частично секретируемые и частично связанные с микробной клеткой; • Класс С - токсины, связанные и с микробной клеткой и попадающие в окружающую среду при разрушении клетки.

Экзотоксины обладают высокой токсичностью. Под воздействием формалина и температуры экзотоксины утрачивают свою токсичность, но сохраняют иммуногенное свойство. Такие токсины получили название анатоксины и

применяются для профилактики заболевания столбняка, гангрены, ботулизма, дифтерии, а также используются в виде антигенов для иммунизации животных с целью получения анатоксических сывороток. Эндотоксиныпо своей химической структуре являются липополисахаридами, которые содержатся в клеточной стенке грамотрицательных бактерий и выделяются в окружающую среду при лизисе бактерий. Эндотоксины не обладают специфичностью, термостабильны, менее токсичны, обладают слабой иммуногенностью. При поступлении в организм больших доз эндотоксины угнетают фагоцитоз, гранулоцитоз, моноцитоз, увеличивают проницаемость капилляров, оказывают разрушающее действие на клетки. Микробные липополисахариды разрушают лейкоциты крови, вызывают дегрануляцию тучных клеток с выделением вазодилататоров, активируют фактор Хагемана, что приводит к лейкопении, гипертермии, гипотонии, ацидозу, дессиминированной внутрисосудистой коагуляции (ДВК). Эндотоксины стимулируют синтез интерферонов, активируют систему комплемента по классическому пути, обладают аллергическими свойствами. При введении небольших доз эндотоксина повышается резистентность организма, усиливается фагоцитоз, стимулируются В-лимфоциты. Сыворотка животного иммунизированного эндотоксином обладает слабой антитоксической активностью и не нейтрализует эндотоксин. Патогенность бактерий контролируется тремя типами генов: гены - собственной хромосомами, гены привнесенные плазмидами умеренными фагами.

Этапы развития:

Конец XIX — начало XX-го века. Основным методом идентификации вирусов в этот период был метод фильтрации через бактериологические фильтры, которые использовались как средство разделения возбудителей на бактерии и небактерии. Были открыты следующие вирусы: вирус табачной мозаики; ящура; желтой лихорадки; оспы и трахомы; полиомиелита; кори; вирус герпеса.

30-е годы — основным вирусологическим методом, используемым для выделения вирусов и их дальнейшей идентификации, являются лабораторные животные. 1931 г. — в качестве экспериментальной модели для выделения вирусов стали использоваться куриные эмбрионы, которые обладают высокой чувствительностью к вирусам гриппа, оспы, лейкоза. Открыты: вирус гриппа; клещевого энцефалита.

40-е годы. Установили, что вирус осповакцины содержит ДНК, но не РНК. Стало очевидным, что вирусы отличаются от бактерий не только размерами и неспособностью расти без клеток, но и тем, что они содержат только один вид нуклеиновой кислоты — ДНК или РНК. Введение в вирусологию метода культуры клеток явилось важным событием, давшим возможность получения культуральных вакцин. Из широко применяемых в настоящее время культуральных живых и убитых вакцин, созданных на основе аттенуированных штаммов вирусов, следует отметить вакцины против полиомиелита, паротита, кори и краснухи.

50-е годы:Открыты вирусы: аденовирусы; краснухи; вирусы парагриппа.

70-е годы:открытие в составе РНК-содержащих онкогенных вирусов фермента обратной транскриптазы (ревертазы). Становится реальным изучение генома РНК содержащих вирусов. Открыты вирусы: вирус гепатита B; ротавирусы, вирус гепатита A.

80-е годы. Развитие представлений о том, что возникновение опухолей может быть связано с вирусами. Компоненты вирусов, ответственные за развитие опухолей, назвали онкогенами. Открыты вирусы: иммунодефицита человека; вирус гепатита C.

Иммунологическая память. Иммунологическая толерантность.

Иммунологическая память. При повторной встрече с антигеном организм формирует более активную и быструю иммунную реакцию — вторичный иммунный ответ. Этот феномен получил название иммунологической памяти.

Иммунологическая память имеет высокую специфичность к конкретному антигену, распространяется как на гуморальное, так и клеточное звено иммунитета и обусловлена В- и Т-лимфоцитами. Она образуется практически всегда и сохраняется годами и даже десятилетиями. Благодаря ней наш организм надежно защищен от повторных антигенных интервенций.

На сегодняшний день рассматривают два наиболее вероятных механизма формирования иммунологической памяти. Один из них предполагает длительное сохранение антигена в организме. Этому имеется множество примеров: инкапсулированный возбудитель туберкулеза, персистирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие патогены длительное время, иногда всю жизнь, сохраняются в организме, поддерживая в напряжении иммунную систему. Вероятно также наличие долгоживущих дендритных АПК, способных длительно сохранять и презентировать антиген.

Другой механизм предусматривает, что в процессе развития в организме продуктивного иммунного ответа часть антигенореактивных Т- или В-лимфоцитов дифференцируется в малые покоящиеся клетки, или клетки иммунологической памяти. Эти клетки отличаются высокой специфичностью к конкретной антигенной детерминанте и большой продолжительностью жизни (до 10 лет и более). Они активно рециркулируют в организме, распределяясь в тканях и органах, но постоянно возвращаются в места своего происхождения за счет хоминговых рецепторов. Это обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному типу.

Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и поддержания его длительное время на защитном уровне. Осуществляют это 2—3-кратными прививками при первичной вакцинации и периодическими повторными введениями вакцинного препарата — ревакцинациями.

Однако феномен иммунологической памяти имеет и отрицательные стороны. Например, повторная попытка трансплантировать уже однажды отторгнутую ткань вызывает быструю и бурную реакцию — криз отторжения.

Иммунологическая толерантность— явление, противоположное иммунному ответу и иммунологической памяти. Проявляется она отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания.

В отличие от иммуносупрессии иммунологическая толерантность предполагает изначальную ареактивность иммунокомпетентных клеток к определенному антигену.

Иммунологическую толерантность вызывают антигены, которые получили название толерогены. Ими могут быть практически все вещества, однако наибольшей толерогенностью обладают полисахариды.

Иммунологическая толерантность бывает врожденной и приобретенной. Примером врожденной толерантности является отсутствие реакции иммунной системы на свои собственные антигены. Приобретенную толерантность можно создать, вводя в организм вещества, подавляющие иммунитет (иммунодепрессанты), или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность может быть активной и пассивной. Активная толерантность создается путем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать веществами, тормозящими биосинтетическую или пролиферативную активность иммунокомпетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.).

Иммунологическая толерантность отличается специфичностью — она направлена к строго определенным антигенам. По степени распространенности различают поливалентную и расщепленную толерантность. Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в состав конкретного антигена. Для расщепленной, или моновалентной, толерантности характерна избирательная невосприимчивость каких-то отдельных антигенных детерминант.

Степень проявления иммунологической толерантности существенно зависит от ряда свойств макроорганизма и толерогена.

Важное значение в индукции иммунологической толерантности имеют доза антигена и продолжительность его воздействия. Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантность вызывают введением больших количеств высококонцентрированного антигена. Низкодозовая толерантность, наоборот, вызывается очень малым количеством вы-сокогомогенного молекулярного антигена.

Механизмы толерантности многообразны и до конца не расшифрованы. Известно, что ее основу составляют нормальные процессы регуляции иммунной системы. Выделяют три наиболее вероятные причины развития иммунологической толерантности:

1. Элиминация из организма антигенспецифических клонов лимфоцитов.

2. Блокада биологической активности им-мунокомпетентных клеток.

3. Быстрая нейтрализация антигена антителами.

Феномен иммунологической толерантности имеет большое практическое значение. Он используется для решения многих важных проблем медицины, таких как пересадка органов и тканей, подавление аутоиммунных реакций, лечение аллергий и других патологических состояний, связанных с агрессивным поведением иммунной системы.

Возбудитель лихорадки Ку. Таксономия.

Зооантропоноз, с аэрогенным механизмом заражения, характеризуется лихорадкой, поражением дыхательной системы (пневмония).

Таксономия и общая характеристика.Возбудитель — Coxiella burnetii.Имеет более мелкие, чем риккетсии, размеры, полиморфен; чаше в форме коккобацилл. Окрашивается в красный цвет при окраске по Здродовскому, по Романовскому. Внутриклеточный паразит. Хорошо размножается в клещах, культурах клеток. По структуре клеточной стенки отличается от риккетсий наличием (1 фаза) или отсутствием (II фаза) в оболочке структурного липополисахарида. Гемолитические свойства не установлены, бляшкообразование выражено. Размножается в фаголизосомах протоплазмы чувствительных клеток. Устойчив к факторам внешней среды, длительно сохраняется на предметах.

Эпидемиология.Источник возбудителя - крупный и мелкий рогатый скот. Инфекция неконтагиозна, поддерживается за счет грызунов, с участием клещей. Инфекция у клещей передается потомству трансовариально. Заражение— аэрогенное — в результате вдыхания аэрозолей, содержащих возбудителя, или пероральное — при употреблении в пищу мясных и молочных продуктов больных животных.

Клиника: Болезнь протекает в острой, подострой или хронической форме.

Инкубационный период при острой форме 12 дней. Заболевание носит характер лихорадки с поражением дыхательной системы (пневмонии) и гепатолиенальным синдромом. Сыпь не характерна. Первичными клетками-мишенями для коксиелл служат гистиоциты и макрофаги, дополнительно — клетки эндотелиальной системы кровеносных сосудов.

Микробиологическая диагностика:Особенности коксиелл, связанные с их фазовым состоянием, затрудняют лабораторную диагностику. Последняя осуществляется с применением в серологических реакциях (РСК, РНИФ, ИФА) антигенов I и II фаз коксиелл. Обнаружение у больного IgG антител к антигену 1 фазы в титре 1:800 подтверждает хроническую форму болезни.

Лечение:Препаратами тетрациклинового (тетрациклин, доксициклин) и хинолонового ряда. Лечение хронических форм и осложнений требует длительного, комбинированного применения антибиотиков.

Профилактика:Существует живая вакцина на основе штамма М-44 коксиелл Бернета, для вакцинации прежде всего с/х животных с целью уменьшения опасности выделения коксиелл в окружающую среду. Неспецифическая профилактика - эпидемиологический надзор за коксиеллезом.

Билет№25

Способы получения энергии бактериями (дыхание,

Дыхание, или биологическое окисление, основано на окислительно-восстановительных реакциях, идущих с образованием АТФ-универсального аккумулятора химической энергии. Энергия необходима микробной клетке для ее жизнедеятельности. При дыхании происходят процессы окисления и восстановления: окисление — отдача донорами (молекулами или атомами) водорода или электронов; восстановление — присоединение водорода или электронов к акцептору. Акцептором водорода или электронов может быть молекулярный кислород (такое дыхание называется аэробным) или нитрат, сульфат, фумарат (такое дыхание называется анаэробным — нитратным, сульфатным, фумаратным).

Анаэробиоз (от греч. аег — воздух + bios — жизнь) — жизнедеятельность, протекающая при отсутствии свободного кислорода. Если донорами и акцепторами водорода являются органические соединения, то такой процесс называется брожением. При брожении происходит ферментативное расщепление органических соединений, преимущественно углеводов, в анаэробных условиях. С учетом конечного продукта расщепления углеводов различают спиртовое, молочнокислое, уксуснокислое и другие виды брожения.

По отношению к молекулярному кислороду бактерии можно разделить на три основные группы: облигатные, т.е. обязательные, аэробы, облигатные анаэробы и факультативные анаэробы.

Возбудитель дифтерии. Таксономия и характеристика.

Дифтерия — острая инфекционная болезнь, характеризующаяся фибринозным воспалением в зеве, гортани, реже в других органах и явлениями интоксикации. Возбудителем ее является Corynebacterium diphtheriae.

Таксономия. Corynebacterium относится к отделу Firmicutes, роду Corynebacterium.

Морфологические и тинкториальные свойства. Возбудитель дифтерии характеризуется полиморфизмом: тонкие, слегка изогнутые палочки (наиб. распространенные) встречаются кокковидные и ветвящиеся формы. Бактерии нередко располагаются под углом друг к другу. Они не образуют спор, не имеют жгутиков, у многих штаммов выявляют микрокапсулу. Характерная особенность - наличие на концах палочки зерен волютина (обусловливает булавовидную форму). Возбудитель дифтерии по Граму окрашивается положительно.

Культуральные свойства. Факультативный анаэроб, оптим. температура. Микроб растет на специальных питательных средах, например на среде Клауберга (кровяно-теллуритовый агар), на которой дифтерийная палочка даёт колонии 3 типов: а) крупные, серые, с неровными краями, радиальной исчерченностью, напоминающие маргаритки; б) мелкие, черные, выпуклые, с ровными краями; в) похожие на первые и вторые.

В зависимости от культуральных и ферментативных свойств различают 3 биологических варианта C.diphtheriae: gravis, mitis и промежуточный intermedius.

Ферментативная активность. Высокая. Ферментируют глк и мальтозу в образованием кислоты, не разлагают сахарозу, лактозу и маннит. Не продуцируют уреазу и не образуют индол. Продуцирует фермент цистиназу, рпсщепляющую цистеин до H2S. Образует каталазу, сукцинатдегидрогеназу.

Антигенные свойства. О-антигены – термостабильные полисахаридные, расположены в глубине клеточной стенки. К-антигены – поверхностные, термолабильные, сероватоспецифические. С помошью сывороток к К-антигену С.diph. разделяют на серовары(58).

Факторы патогенности. Экзотоксин, нарушающий синтез белка и поражающий в связи с этим клетки миокарда, надпочечников, почек, нервных ганглиев. Способность вырабатывать экзотоксин обусловлена наличием в клетке профага, несущего tох-ген, ответственный за образование токсина. Ферменты агрессии — гиалуронидазу, нейраминидазу. К факторам патогенности относится также микрокапсула.

Резистентность. Устойчив к высушиванию, действию низких температур, поэтому в течение нескольких дней может сохраняться на предметах, в воде.

Эпидемиология. Источник дифтерии — больные люди Заражение происходит чаще через дыхательные пути. Основной путь передачи воздушно-капельный, возможен и контактный путь — через белье, посуду.

Патогенез. Входные ворота инфекции — слизистые оболочки зева, носа, дыхательных путей, глаз, половых органов, раневая поверхность. На месте входных ворот наблюдается фибринозное воспаление, образуется характерная пленка, которая с трудом отделяется от подлежащих тканей. Бактерии выделяют экзотоксин, попадающий в кровь, — развивается токсинемия. Токсин поражает миокард, почки, надпочечники, нервную систему.

Клиника. Существуют различные по локализации формы дифтерии: дифтерия зева, которая наблюдается в 85—90 % случаев, дифтерия носа, гортани, глаз, наружных половых органов, кожи, ран. Инкубационный период составляет от 2 до 10 дней. Заболевание начинается с повышения температуры тела, боли при глотании, появления пленки на миндалинах, увеличения лимфатических узлов. Отека гортани, развивается дифтерийный круп, который может привести к асфиксии и смерти. Другими тяжелыми осложнениями, которые также могут явиться причиной смерти, являются токсический миокардит, паралич дыхательных мышц.

Иммунитет. После заболевания - стойкий, напряженный антитоксичный иммунитет. Особое значение – образование АТ к фрагменту В. Они нейтрализуют дифтерийный гистотоксин, предупреждая прикрепление последнего к клетке. Антибактериальный иммунитет – ненажняженный, сероватоспецифичен

Микробиологическая диагностика. С помощью тампона у больного берут пленку и слизь из зева и носа. Для постановки предварительного диагноза возможно применение бактериоскопического метода. Основной метод диагностики — бактериологический: посев на среду Клаубера II (кровяно-теллуритовый агар), на плотную сывороточную среду для выявления продукции цистиназы, на среды Гисса, на среду для определения токсигенности возбудителя. Внутривидовая идентификация заключается в определении био- и серовара. Для ускоренного обнаружения дифтерийного токсина применяют: РНГА(реакция непрямой геммаглютинации) с антительным эритроцитарным диагностикумом , реакцию нейтрализации антител (о наличии токсина судят по эффекту предотвращения гемаггютинации); РИА (радиоиммунный) и ИФА(имунноферментный анализ).

Лечение. Основной метод терапии — немедленное введение специфической антитоксической противодифтерийной лошадиной жидкой сыворотки. Иммуноглобулин человека противодифтерийный для в/в введения.

Ассоциированные вакцины: АКДС (абсорбированная коклюшно – столбнячная вакцина), АДС (абсорбированный дифтерийно - столбнячный анатоксин).

Билет №2

Морфология простейших. Принципы

Простейшие — эукариотические одноклеточные микроорганизмы, составляющие подцарство Protozoa царства животных (Animalia). Простейшие включают 7 типов, из которых четыре типа (Sarcomastigophora, Apicomplexa, Ciliophora, Microspora) имеют представителей, вызывающих заболевания у человека. Размеры простейших колеблются в среднем от 5 до 30 мкм.

Снаружи простейшие окружены мембраной (пелликулой) — аналогом цитоплазматической мембраны клеток животных. Некоторые простейшие имеют опорные фибриллы. Цитоплазма и ядро соответствуют по строению эукариотическим клеткам: цитоплазма состоит из эндоплазматического ретикулума, митохондрий, лизосом, многочисленных рибосом и др.; ядро имеет ядрышко и ядерную оболочку. Передвигаются простейшие посредством жгутиков, ресничек и путем образования псевдоподий. Простейшие могут питаться в результате фагоцитоза или образования особых структур. Многие простейшие при неблагоприятных условиях образуют цисты — покоящиеся стадии, устойчивые к изменению температуры, влажности и др. Простейшие окрашиваются по Романовскому—Гимзе (ядро — красного, цитоплазма — синего цвета).Простейшие представлены 7 типами, из которых четыре типа (Sarcomastigophora, Apicomplexa, Ciliopkora, Microspora) включают возбудителей заболеваний у человека. Тип Sarcomastigophora. Подтип Mastigophora (жгутиконосцы) включает следующих патогенных представителей: трипаносому — возбудителя африканского трипаносомоза (сонная болезнь); лейшмании — возбудителей кожной и висцеральной форм лейшманиозов; трихомонады, передающиеся половым путем и паразитирующие в толстой кишке человека; лямблию — возбудителя лямблиоза. Эти простейшие характеризуются наличием жгутиков: один — у лейшмании, четыре свободных жгутика и короткая ундулирующая мембрана — у три-хомонад. К подтипу Sarcodina (саркодовые) относится дизентерийная амеба — возбудитель амебной дизентерии человека. Морфологически сходна с ней непатогенная кишечная амеба. Эти простейшие передвигаются путем образования псевдоподий. Питательные вещества захватываются и погружаются в цитоплазму клеток. Половой путь размножения у амеб отсутствует. При неблагоприятных условиях они образуют цисту. Тип Apicomplexa. В классе Sporozoa (споровики) патогенными представителями являются возбудители токсоплазмоза, кокцидиоза, саркоцистоза и малярии. Жизненный цикл возбудителей малярии характеризуется чередованием полового размножения (в организме комаров Anopheles) и бесполого (в клетках тканей и эритроцитах человека они размножаются путем множественного деления). Токсоплазмы имеют форму полулуний. Токсоплазмозом человек заражается от животных. Токсоплазмы могут передаваться через плаценту и поражать центральную нервную систему и глаза плода. Тип Ciliophora. Патогенный представитель — возбудитель ба-лантидиаза — поражает толстый кишечник человека. Балантидии имеют многочисленные реснички и поэтому подвижны.

Тип Microspora включает микроспоридии — маленькие (0,5—10 мкм) облигатные внутриклеточные паразиты, широко распространенные среди животных и вызывающие у ослабленных людей диарею и гнойно-воспалительные заболевания.

Р

Наши рекомендации