ЛАБОРАТОРНАЯ РАБОТА №5 ИМПЕДАНС БИОЛОГИЧЕСКИХ ТКАНЕЙ

Цель работы:

Изучение зависимости импеданса участка живой ткани и электрической модели живой ткани от частоты электрического тока и определение показателя жизнеспособности К.

Приборы и принадлежности:

Генератор переменного напряжения с вольтметром ЗГ (звуковой генератор), микроамперметр с переключателем режимов измерения на задней стенке, электрическая модель участка живой ткани, электроды, соединительные провода, марлевые прокладки, физиологический раствор.

Схема установки:

  ЗГ  
  ЗГ  

µА ааааа а ɑаɑаА
µА ааааа а ɑаɑаА

ЭМ

Э

Z

Э

Рис.5 Схема режима Рис.6 Схема режима подключения

подключения электродов (Э) электрической модели (ЭМ)

Порядок выполнения работы:

1. Установите переключатель режимов измерения на микроамперметре в положение «Электрическая модель» ( рис.6.).

2. Изменяя частоту подаваемого с генератора ЗГ сигнала, начиная от 2000 Гц и до 25 Гц, произведите однократное измерение силы тока по микроамперметру на всех частотах, указанных в таблице измерений. Результаты зафиксируйте в таблице. Следите, чтобы напряжение на вольтметре ЗГ оставалось постоянным и не превышало 1 вольт. В конце уменьшите напряжение до 0 вольт.

3. Установите переключатель режимов измерения на микроамперметре в положение «Живая ткань»(рис.5).

4. С помощью резиновых зажимов закрепите на руке электроды. Между кожей и электродами поместите марлевые прокладки, смоченные физиологическим раствором.

5. Аналогично пункту 2, изменяя частоту подаваемого с генератора ЗГ сигнала в том же диапазоне частот (2000 Гц – 25 Гц), произведите однократные измерения силы тока по микроамперметру на каждой из указанных в таблице частот. Результаты занесите в таблицу измерений. После измерений сначала уменьшите напряжение до 0 вольт, а затем снимите с руки электроды.

Таблица измерений:

ν,Гц lgν Участок живой ткани Электрическая модель
I±∆I,мкА Z±∆Z,Ом I±∆I,мкА Z±∆Z,Ом
         
         
         
         
         
         
         
         
         
         
         
         


Обработка результатов измерений:

1. Для каждой частоты рассчитайте импеданс живой ткани и модели по формуле Z=U/I .Здесь Z - значение импеданса в омах, U – величина приложенного напряжения в вольтах, I – сила тока в амперах. Полученные результаты занесите в таблицу измерений.

2. По классу точности микроамперметра (цифре указанной в рамке в правой нижней части его шкалы) определите систематическую (приборную) погрешность прямого измерения силы тока ∆I по формуле:

∆I= ЛАБОРАТОРНАЯ РАБОТА №5 ИМПЕДАНС БИОЛОГИЧЕСКИХ ТКАНЕЙ - student2.ru

Здесь Iпред. – максимально возможное значение отсчёта по шкале микроамперметра. В качестве приборной погрешности прямого измерения напряжения ∆U возьмите половину цены самого маленького деления на рабочей шкале вольтметра.

Вычислите погрешность определения импеданса ∆Z для всех частот, приведённых в таблице измерений. Поскольку импеданс определяется по формуле, то для расчёта его погрешности ∆Z воспользуйтесь формулой для обработки результатов косвенных измерений:

ЛАБОРАТОРНАЯ РАБОТА №5 ИМПЕДАНС БИОЛОГИЧЕСКИХ ТКАНЕЙ - student2.ru

Здесь Z вычисленное конкретное значение импеданса в омах на каждой из частот таблицы измерений, I и U ток и напряжение на соответствующих частотах, ∆I и ∆U приборные погрешности тока и напряжения. Напряжение и его погрешность измеряются в вольтах; ток и погрешность тока в этой формуле можно брать и в микроамперах, поскольку под корнем берётся их отношение.

3. На миллиметровой бумаге в одних осях постройте с учётом погрешности графики зависимости импеданса ЛАБОРАТОРНАЯ РАБОТА №5 ИМПЕДАНС БИОЛОГИЧЕСКИХ ТКАНЕЙ - student2.ru от частоты приложенного напряжения для участка живой ткани и для электрической модели. Ось частот следует брать в логарифмическом масштабе.

4. Из сравнения двух графиков дайте заключение о степени соответствия электрической модели участку живой ткани. В случае заметного несоответствия попытайтесь объяснить причину.

5. На графике зависимости импеданса участка живой ткани от частоты выберите две частоты ЛАБОРАТОРНАЯ РАБОТА №5 ИМПЕДАНС БИОЛОГИЧЕСКИХ ТКАНЕЙ - student2.ru =200 Гц и ЛАБОРАТОРНАЯ РАБОТА №5 ИМПЕДАНС БИОЛОГИЧЕСКИХ ТКАНЕЙ - student2.ru =2000Гц и установите соответствующие значения импеданса Z( ЛАБОРАТОРНАЯ РАБОТА №5 ИМПЕДАНС БИОЛОГИЧЕСКИХ ТКАНЕЙ - student2.ru ) и Z( ЛАБОРАТОРНАЯ РАБОТА №5 ИМПЕДАНС БИОЛОГИЧЕСКИХ ТКАНЕЙ - student2.ru ). Определите коэффициент жизнеспособности из соотношения К= Z( ЛАБОРАТОРНАЯ РАБОТА №5 ИМПЕДАНС БИОЛОГИЧЕСКИХ ТКАНЕЙ - student2.ru )/ Z( ЛАБОРАТОРНАЯ РАБОТА №5 ИМПЕДАНС БИОЛОГИЧЕСКИХ ТКАНЕЙ - student2.ru ).

6. Сделайте вывод. В выводе отразите:

6.1 Достигнута ли цель работы?

6.2 Какое явление наблюдали?

6.3 согласуется ли полученный результат с теоретическим ?

6.4 О чём говорит найденный коэффициент жизнеспособности?

6.5 Наблюдается ли отличие импеданса модели от живой ткани? Если да, то на каких частотах и почему?

6.6 Оцените погрешность.

7.Дайте теоретическое обоснованиеработы, опираясь на вопросы для самоподготовки

Вопросы для самоподготовки:

1.Диэлектрики в электрическом поле. Диэлектрические свойства живых тканей.

2.Электропроводимость электролитов. Электропроводимость биологических тканей и жидкостей при постоянном электрическом токе.

3.Переменный ток. Полное сопротивление в цепи переменного тока. Импеданс живых тканей. Дисперсия импеданса. Что такое коэффициент жизнеспособности? Как его находить и что он характеризует? Физические основы реографии.

Литература:

1. Ремизов А.Н., Максина А.Г., Потапенко А.Я. Медицинская и

биологическая физика. М.: Дрофа, 2007.

с.238 – 242 , с. 246 – 248 , с. 268 – 271, с.272-278

2. Самойлов В.О. Медицинская биофизика. СПб.: СпецЛит, 2004.

с. 252 – 262

3. Краткие основы медицинской электронной аппаратуры. Часть 1.

/Соколов Д.В., Марущак В.А., Кулинкин Б.С., Кулинкин А.Б.,

Проценко Н.Е., Шокин О.В./ СПб.: Издательство СПбГМУ, 2009.

с. 9 – 17

Наши рекомендации