Основные клинические эффекты воздействия ионизирующей радиации на человека
При однократном остром облучении, а также пролонгированном дробном или хроническом облучении любыми, даже ничтожно малыми дозами повышается риск отдаленных стохастических последствий – рака и генетических нарушений: на коллективную дозу в 1 млн чел-бэр приходится 20 летальных исходов от рака и 45 случаев генетических нарушений.
Хроническое облучение дозами порядка 10 бэр (0,1 Зв) в год снижает неспецифическую резистентность организма, а в дозе 50 бэр (0,5 Зв) кроме снижения иммунореактивности часто развивается катаракта. Однократное острое облучение дозой в 100 бэр (1 Зв) вызывает острую лучевую болезнь с нарушением кроветворения и состава периферической крови, эпиляцией волос, нарушением зрения, увеличивается частота стохастических эффектов.
Местное пролонгированное действие на щитовидную железу доз порядка 1000 бэр (10 Зв) ведет к гипофункции щитовидной железы, росту зоба и риска развития опухолей (аденом или рака) с вероятной частотой около 0,01, т.е. 1 случая на 100 пострадавших.
13. Доза ионизирующего излучения: физическая (экспозиционная), поглощенная, эквивалентная, эффективная. Относительная биоогическая эффективность излучений. Мощность дозы. Единицы и методы измерения доз, дозиметрический контроль.
Доза излучения - это энергия излучения, поглощенная определенной массой воздуха или другого облучаемого вещества.
Экспозиционная доза – суммарный электрический заряд ионов одного знака, возникающих в единице массы сухого воздуха вследствие его ионизации излучением. Единица экспозиционной дозы в системе СИ - кулон на килограмм сухого воздуха (Кл/кг); внесистемная единица - рентген (Р). 1Р = 2,58· 10-4 Кл/кг; 1 Кл/кг = 3,88· 103 Р.
Поглощенная доза - энергия излучения, поглощенная единицей массы облучаемого вещества или живых тканей, измеряемая в системе СИ в джоулях на килограмм (Дж/кг). Единица поглощенной энергии - Грей (Гр), внесистемная единица - рад: 1 Гр = 1 Дж/кг = 100 рад. 1 рад = 100 эрг/г = 1·10-2 Дж/кг.
Эквивалентная доза внешнего облучения - доза, поглощенная в органе или ткани организма и умноженная на взвешивающий коэффициент для данного вида излучения R. Взвешивающий коэффициент для какого-либо вида излучения WR отражает относительную биологическую эффективности излучения (ОБЭ) = КК (коэффициенту качества лучей)[1].
Единица эквивалентной дозы в системе СИ - Зиверт (Зв): 1Зв = 1 Гр ´ WR = 100 рад ´ WR = 100 бэр. Бэр (биологический эквивалент рада) - внесистемная единица. 1 бэр = 1 рад ´ WR.
Дозиметрия
Дозиметрия - измерение дозы внешнего облучения или мощности дозы в единицу времени; осуществляется с помощью стационарных или индивидуальных дозиметров – приборов для измерения дозы или мощности дозы облучения.
Работа дозиметров основана на эффектах, возникающих в воздухе или другой среде при прохождении через нее ионизирующих излучений. В отличие от корпускулярных излучений g-кванты не замедляются в среде, их энергия или поглощается, или рассеивается. При поглощении g-квантов возникают следующие эффекты: ионизация молекул среды, фотоэффект (при котором атомы поглощают g-кванты и испускают электроны) и образование из g-кванта электронно-позитронной пары. При устройстве дозиметров используются методы: ионизационный, сцинтилляционный, термолюминесцентный, фотографический.
Ионизационный метод используется для измерения как экспозиционной дозы, так и мощности дозы излучения. Для измерения дозы в качестве детектора может быть использован конденсатор или электроскоп. Образующиеся между электродами ионы уменьшают величину электрического заряда на электродах, что и фиксируется на шкалах дозиметров в единицах экспозиционной дозы (Р, мР, мкР).
Дозиметр КИД-2 представляет собой комплект из двух конденсаторов: желтый его конец – конденсатор меньшей емкости, позволяющий измерять дозу ионизирующего излучений до 0,05 Р; красный конец – конденсатор, с помощью которого можно измерить дозу до 1 Р. На панели зарядно-измерительного устройства имеются соответственно 2 шкалы: желтая до 0,05 Р и красная до 1 Р.
На панели зарядно-измерительного устройства имеются 2 гнезда: «заряд» для предварительной зарядки обоих конденсаторов и «измерение», куда вставляется сначала конденсатор меньшей емкости (желтый), а в случае зашкаливания стрелки прибора вставляется красный конденсатор и производится измерение в диапазоне от 0,05 до 1 Р. Неудобство применения дозиметра типа КИД состоит в том, что величина дозы, полученной человеком за время выполнения работы, становится известной лишь по окончании работы, на дозиметрическом пункте.
Этого недостатка лишены прямопоказывающие дозиметры типа ДК, устроенные по типу электроскопа. Перед работой индивидуальный дозиметр помещается в гнездо зарядного устройства, где заряжается полностью. Во время работы во избежание переоблучения доза может неоднократно контролироваться визуально самим рабочим. Для этого достаточно приставить один конец трубки дозиметра к глазу, а второй направить на источник света (солнце, окно, лампу). В канале дозиметра видна шкала, пересекаемая вертикальной чертой на уровне полученной к этому моменту дозы облучения.
Для регистрации мощности дозы используется детектор в виде ионизационной камеры, в которой образующиеся ионы замыкают электрическую цепь и создают постоянный ток, сила которого пропорциональна мощности дозы излучения. В отличие от газоразрядного счетчика ионизационная камера работает в режиме низкого напряжения (36 вольт).
Сцинтилляционный метод использует сцинтилляторы, аналогичные применяемым в радиометрии (органические или неорганические соединения). Возникающие в сцинтилляторе под действием излучения вспышки света преобразуются фотоэлектронным умножителем в импульсы тока, скорость счета которых пропорциональна мощности дозы излучения.
Термолюминесцентный метод основан на накоплении люминофором (чаще всего – алюмофосфатным стеклом) энергии поглощенного ионизирующего излучения и отдаче ее в виде светового потока после дополнительного нагрева до 300°С токами высокой частоты.
Фотографический метод основан на использовании эмульсии рентгеновской пленки, потемнение которой под действием излучения пропорционально экспозиционной дозе излучения.
14. Принципы гигиенического нормирования внешнего ионизирующего облучения. Нормы радиационной безопасности для медицинского персонала категорий А и Б.
Нормативы облучения установлены МКРЗ (Международной комиссией радиационной защиты) для двух категорий лиц: «персонал» (категория А) - лица, работающие с источниками излучений («профессиональное облучение) и «лица из населения» (категория Б), к которой относятся люди, имеющие повышенный риск облучения по сравнению с остальным населением, а также работающие или проживающие в сфере возможного воздействия излучений. Предполагается, что остальное население (категория В) получает облучение лишь незначительно превышающее существующий в данной местности уровень естественного радиационного фона.
Для облучаемых лиц предусмотрено три класса нормативов:
1) основные дозовые пределы, в которые не включаются дозы от природных, медицинских и аварийных источников ионизирующего излучения;
2) допустимые уровни монофакторного (для одного вида излучения или одного радионуклида) пути поступления воздействия;
3) пределы годового поступления радионуклидов.
Основные дозовые пределы и предельно допустимые дозы облучения работающего населения приведены в табл.52.
Таблица 52. Основные дозовые пределы
Нормируемая величина | Дозовые пределы для лиц категории А, бэр (мЗв) | Дозовые пределы для лиц категории Б, бэр (мЗв) |
Эквивалентная доза | 2 бэр (20 мЗв) в год в среднем за 5 лет, но не более 5 бэр (50 мЗв) за один год | 0,1 бэр (1 мЗв) в год в среднем за 5 лет, но не более 0,5 бэр (5 мЗв) за один год |
Эффективная эквивалентная доза за год: | ||
В хрусталике глаза | 15 бэр (150 мЗв) | 1,5 бэр (15 мЗв) |
В коже | 50 бэр (500 мЗв) | 5 бэр (50 мЗв) |
В кистях и стопах | 50 бэр (500 мЗв) | 5 бэр (50 мЗв) |
На практике удобно пользоваться понятием «критический орган», т.е. орган или ткань, преимущественно страдающая при облучении. Все органы и ткани организма подразделяются на три группы "критических органов":
1-ая группа (наиболее чувствительные к радиации органы, в которых идет активный митоз и имеются клетки на разных уровнях созревания). К ним относятся внутренние половые органы (гонады), кроветворные органы (в частности, красный костный мозг) и все тело.
2-ая группа: органы грудной и брюшной полости (легкие, сердце, пищеварительный тракт, печень, почки, селезенка), а также щитовидная железа и хрусталик глаза.
3-ья группа (наименее радиочувствительные органы и части тела): костная ткань, кожный покров, кисти, предплечья, стопы и лодыжки. Нормирование по группам критических органов предусматривает предельно допустимые дозы годового облучения (ПДД) для лиц категории А и пределы доз (ПД) для лиц категории Б (табл. 53).
Таблица 53. Предельно допустимые дозы и пределы доз за год