Хламидии, общая характеристика, способы размножения. Заболевания, вызываемые ими.
Хламидии (Chlamydia) -- мелкие грамотрицательные кокковидные бактерии, размером 250-1500нм (0,25-1 мкм). Они имеют все основные признаки бактерий: содержат два типа нуклеиновых кислот (ДНК и РНК), рибосомы, мурамовую кислоту (компонент клеточной стенки грамотрицательных бактерий), размножаются бинарным делением и чувствительны к некоторым антибиотикам.
Все хламидии сгруппированы в порядок Chlamydiaceae, род Chlamydia, последний включает четыре вида:
Chlamydia trachomatis (Хламидия трахоматис).
Chlamydia psittaci.
Chlamydia pneumonia.
Chlamydia pecorum.
· Chlamydia psittaci – вызывает у человека атипичную пневмонию, энцефаломиокардит, артрит, пиелонефрит.
· Chlamydia pecorum описана недавно, изолирована от животных-овец, крупного рогатого скота. Имеет сходство с Chlamydia psittaci. Роль в патогенезе заболеваний человека неизвестна.
· Chlamydia pneumoniae вызывает у взрослых острые респираторные заболевания и мягкую форму пневмонии.
· Вид Chlamydia trachomatis встречается только у человека, в ней выявлены 18 антигенных вариантов (серотипов).
Серотипы А,В,С -- возбудители трахомы. Переносчиками являются насекомые, основной путь заражения -- попадание инфекционного агента посредством втирания в область слизистой оболочки глаза. Образующиеся в результате развития инфекционного процесса рубцы ведут к потере зрения. Серотипы L1-L3 размножаются в лимфоидной ткани и являются возбудителями тропической венерической болезни Lymphogranuloma venerum. В случае серотипов от D до К -- заражение происходит при половом контакте, значительно реже -- при втирании, новорожденный при родах заражается от инфицированной матери.
24. Особенности генетического аппарата бактерий и вирусов. Понятие о генотипе и фенотипе. Понятие о транспозонах и инвертированных последовательностях.
Гены, необходимые для жизнедеятельности и определяющие видовую специфичность, расположены у бактерий чаще всего в единственной ковалентно замкнутой молекуле ДНК — хромосоме Область, где локализована хромосома, называется нуклеоид и не окружена мембраной. В связи с этим новосинтезированная мРНК сразу доступна для связывания с рибосомами, а транскрипция и трансляция сопряжены.
Помимо хромосомы, в клетках бактерий часто находятся плазмиды — также замкнутые в кольцо ДНК, способные к независимой репликации. В плазмидах кодируются механизмы устойчивости к антибиотикам, разрушения специфических веществ и т. д., В ДНК бактерий, как и в ДНК других организмов, выделяются транспозоны — мобильные сегменты, способные перемещаться из одной части хромосомы к другой, или во внехромосомные ДНК. В отличие от плазмид, они неспособны к автономной репликации и содержат IS-сегменты — участки, которые кодируют свой перенос внутри клетки.
Генотип — это совокупность всех генов организма, являющихся его наследственной основой.
Фенотип — совокупность всех признаков и свойств организма, которые выявляются в процессе индивидуального развития в данных условиях и являются результатом взаимодействия генотипа с комплексом факторов внутренней и внешней среды.
Транспозоны (англ. transposable element, transposon) — это участки ДНК организмов, способные к передвижению (транспозиции) и размножению в пределах генома[1]. Транспозоны также известны под названием «прыгающие гены» и являются примерами мобильных генетических элементов.
Транспозоны формально относятся к так называемой некодирующей части генома — той, которая в последовательности пар оснований ДНК не несёт информацию об аминокислотных последовательностях белков, хотя некоторые классы мобильных элементов содержат в своей последовательности информацию о ферментах, транскрибируются и катализируют передвижения
Инвертированные повторы -нуклеотидная последовательность ДНК , которая повторяется в противоположных ориентациях на той же самой молекуле
25. Вакцинопрофилактика, типы вакцин, их получение. Адъюванты. Анатоксины и их применение.
Вакцинотерапиязанимает ведущее место в борьбе со многими вирусными заболеваниями человека и животных. Несмотря на большое разнообразие вирусов и вызываемых ими заболеваний, имеются общие принципы приготовления и применения вирусных вакцин. Вакцинация считается эффективной, если она исключает приживление и размножение вирулентного вируса или ограничивает его размножение в месте внедрения и предотвращает распространение к органам-мишеням. Вакцинация должна сопровождаться развитием иммунологической памяти. В идеале, это поддержание специфических антител в высокой концентрации в сыворотке крови и на месте внедрения вируса. В тоже время Т-клетки, ответственные за специфический клеточный иммунитет, должны находиться в состоянии готовности быстро синтезировать свои летальные продукты (т.е. гранзимы и перфорины), когда происходит инфицирование. Все существующие на сегодня вакцины можно разделить на три общие группы: инактивированные (убитые), живые (аттенуированные) и компонентные (субъединичные) вакцины В зависимости от технологии изготовления различают несколько типов вирусных вакцин:
1) Живые реплицирующиеся вакцины: — вакцины из природно ослабленных или гетерологичных вирусов; — вакцины из вирусов, аттенуированных пассажами в гетерологичных организмах или в культурах клеток при обычной или пониженной температуре, или реассортацией вирусных генов.
2) Нереплицирующиеся вакцины, содержащие природные вирусные антигены: - вакцины из инактивированных целых вирионов и неструктурных вирусных белков; - вакцины из нативных вирусных субъединиц.
3) Вакцины, полученные с помощью рекомбинантной ДНК или других новых технологий: - вакцины, полученные путем делеции гена (генов) или точечного мутагенеза; - вакцины на основе вирусных белков, экспрессированных in vitro в клетках эукариотов или прокатиотов; - вакцины из вирусных белков, собранных в вирусоподобные частицы; - вакцины, экспрессирующие вирусные антигены с помощью вирусных векторов; - вакцины на основе вирусных химер; - ДНК-вакцины. .
4) Синтетические полипептидные вакцины. Живые вакцины содержат авирулентные штаммы вирусов, аттенуированные разными способами, и отличаются способностью размножаться в привитом организме (реплицирующиеся антигены). Остальные типы вакцин готовят из инактивированных вирусов или их антигенных и иммуногенных компонентов (нереплицирующиеся антигены).
Адъювант — соединение или комплекс веществ, используемое для усиления иммунного ответа при введении одновременно с иммуногеном. В отличие от иммуномодуляторов, они применяются для усиления конкретного иммунного ответа (например, при вакцинации) чаще всего в здоровом организме, а не для нормализации нарушенных реакций иммунной системы при патологии.
Применение адъювантов:
в медицине - при изготовлении вакцин;
в лабораторной практике - для усиления выработки антител при иммунизации животных, в процессе получения гибридом
26. Место вирусов в биосфере (Д.И.Ивановский, Л.А.Pильбер, В.М.Жданов).
Заболевания растений, животных и человека, вирусная природа которых в настоящее время установлена, в течение многих столетий наносили ущерб хозяйству и вред здоровью человека.
В результате наблюдений Д. И. Ивановский и В. В. Половцев впервые высказали предположение, что болезнь табака, описанная в 1886 году A. D. Mayer в Голландии под название мозаичной, представляет собой не одно, а два совершенно различных заболевания одного и того же растения: одно из них - рябуха, возбудителем которого является грибок, а другое неизвестного происхождения. Ивановский пришел к выводу, что мозаичная болезнь табака вызывается бактериями, проходящими через фильтры Шамберлана, которые, однако, не способны расти на искусственных субстратах. Возбудитель мозаичной болезни называется Ивановским то "фильтрующимися" бактериями, то микроорганизмами, так как сформулировать сразу существование особого мира вирусов было весьма трудно.
По мере изучения природы вирусов в первом полустолетии после их открытия Д. И. Ивановским (1892) формировались представления о вирусах как о мельчайших организмах. Эпитет "фильтрующийся" со временем был отброшен, так как стали известны фильтрующиеся формы или стадии обычных бактерий, а затем и фильтрующиеся виды бактерий. Наиболее правдоподобной и приемлемой является гипотеза о том, что вирусы произошли из "беглой" нуклеиновой кислоты, т.е. нуклеиновой кислоты, которая приобрела способность реплицироваться независимо от той клетки, из которой она возникла, хотя при этом предусматривается, что такая ДНК реплицируется с использованием структур этой или другой клеток.
На основании опытов фильтрации через градуированные линейные фильтры были определены размеры вирусов. Размер наиболее мелких из них оказался равным 20-30 нм, а наиболее крупных - 300-400 нм.
В процессе дальнейшей эволюции у вирусов менялась больше форма, чем содержание.
Таким образом, вирусы, должно быть, произошли от клеточных организмов, и их не следует рассматривать, как примитивных предшественников клеточных организмов.