Стадии формирования лучевого поражения. Прямое и косвенное действие ионизирующих излучений на биомолекулы. Кислородный эффект.

Радиационная медицина

33. Содержание предмета «радиационная медицина». Цели, задачи, методы радиационной медицины.

Радиационная медицина - наука, изучающая особенности воздействия ионизирующего излучения на организм человека, принципы лечения лучевых повреждений и профилактики возможных последствий облучения населения.

Цель: предотвращение или сведение к минимуму возможных последствий облучения человека.

Задачи:

1) вскрытие возможных закономерностей биологического ответа на действие источников ионизирующих излучений

2) управление лучевыми реакциями в организме

Методы радиационной медицины:

1) экспериментальной

2) клинический

3) эпидемиологический

4) метод санитарной экспертизы и гигиенической регламентации

Направления радиационной медицины:

1. дозиметрическое - изучение источников и уровней облучения

2. радиобиологическое - изучение в эксперименте и с помощью эпидемических последствий эффектов и последствий воздействия ионизирующего излучения на биообъекты.

3. клиническое - противолучевая защита и терапия радиационных поражений

4. профилактическое - методологическое обеспечение, санитарно-организационные мероприятия, обоснование и разработка санитарно-гигиенических регламентов и мер защиты населения, контроль обеспечения радиационной безопасности.

34. Понятия: "нуклон", "изотоп", "радионуклид"; их основные характеристики. Радиоактивность, традиционные и системные единицы радиоактивности и их соотношение. Закон радиоактивного распада.

Нуклон - любая частица, входящая в состав ядра (как протон, так и нейтрон). Основные характеристики нуклонов: заряд (у протона - +1, у нейтрона - 0) и масса (масса протона = массе нейтрона = 1,67*10-27 кг, в периодической системе масса 1 протона = массе 1 нейтрона = 1, масса электрона примерно в 2000 раз меньше и считается при расчетах пренебрежительно малой).

А (атомная масса, количество нуклонов данного элемента) = N (число нейтронов в ядре) + Z (атомный номер элемента).

Изотопы - атомы с одним и тем же зарядом ядра (т.е. одинаковым Z), но разным массовым числом, т.е. отличающиеся количеством нейтронов в ядре (разные N и А).

Радионуклиды - ядра радиоактивных атомов:

а) естественные - радионуклиды, которые образовались и постоянно образуются без участия человека

б) искусственные - радионуклиды, получаемые искусственным путем в ядерных реакторах различного назначения и т.д.

В настоящее время практически не существует таких элементов, у которых не было бы радиоактивного изотопа. По химическим свойствам радиоизотопы не отличаются от стабильных, то есть стабильный и радиоактивный изотопы следуют вместе по всем цепочкам в соответствии с химическими и биологическими законами круговорота в природе.

Радиоактивность - самопроизвольное превращение ядер одних элементов в другие, при котором ядро переходит в более устойчивое состояние. Процесс сопровождается испусканием ионизирующих излучений (корпускулярных либо электромагнитных).

За единицы радиоактивности приняты:

а) системная -Беккерель (Бк, Bq).

1 Бк - активность нуклида в радиоактивном источнике, в котором за время 1 с происходит 1 акт распада (1 Бк = 1 распад/сек ).

б) традиционная (внесистемная) - Кюри ( Ки, Ci).

1 Ки - количество радиоактивного вещества, которое распадается с интенсивностью 3,7*1010 распадов в 1 секунду, т.е.

1 Ки = 3,7*1010 Бк, 1 Бк = 2,703*10-11 Ки.

Радиоактивные превращения характеризуются:

1) способом выделения избыточной энергии, которая отдается либо в виде альфа- или бета-частиц определенной энергии, либо электромагнитного излучения;

2) временем протекания радиоактивного распада и вероятностью распада ядра за единицу времени.

Радиоактивный распад - явление статистическое - нельзя предсказать, когда именно распадется данное нестабильное ядро. Для описания статистических закономерностей радиоактивного распада используется естественная статистическая величина - постоянная распада λ, физический смысл которой заключается в том, что если взять большое число N одинаковых нестабильных ядер, то за единицу времени в среднем будет распадаться λN ядер. Постоянная распада λ не зависит от времени.

Величина λN - активность, она характеризует излучение препарата в целом, а не отдельного ядра.

Уменьшение количества активных ядер с течением времени происходит в соответствии с законом радиоактивного распада, который описывается экспоненциальной кривой и формулируется следующим образом: за равные промежутки времени происходит превращение равных долей активных атомов.

Закон радиоактивного распада имеет математическое выражение:

EMBED MathType , где EMBED Equation.3 - исходное количество радиоактивных ядер; EMBED Equation.3 - количество активных ядер, оставшихся спустя время распада t; e - основание натуральных логарифмов; λ - постоянная распада, t - время распада.

Период полураспада (Т1/2 или Tf) - время, в течение которого число радиоактивных ядер уменьшается вдвое.

Постоянная распада λ связана с периодом полураспада, поэтому закон радиоактивного распада можно записать следующим образом:

EMBED MathType EMBED MathType

Данная формула может быть использована для практических целей, когда необходимо дать рекомендации о возможности использования загрязненных радионуклидами территорий, продуктов питания, воды, так как через 10 Т1/2 остается практически чистая среда (т.е. остается меньше 0,1% от исходного количества радионуклида). Пример: I-131 имеет период полураспада, равный 8,05 суток; цельное молоко и листовые овощи местного производства запрещают использовать в течение 2-3 месяцев после выброса радиоактивного йода; у Cs-137 период полураспада равен 30,1 г; у Sr-90 период полураспада равен 29,12 г; т.е. земли, загрязненные Cs-137 и Sr-90 можно будет использовать спустя 300 лет после аварии на ЧАЭС.

35. Механизм образования и характеристика корпускулярных видов излучения (альфа-, бета-частиц); их взаимодействие с веществом.

Ионизирующее излучение - излучение, которое создается при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы разных.

По природе ионизирующие излуч делятся на два основных вида:

а) корпускулярные (альфа, бета, нейтронное)

б) электромагнитные (гамма, рентгеновское)

Основные характеристики для корпускулярных излучений - заряд, масса и энергия частицы - определяют особенности взаимодействия данных излучений с веществом и, соответственно, степень и вероятность их повреждающего действия.

Тип радиоактивного превращения определяется видом частиц, испускаемых при распаде. Процесс радиоактивного распада всегда экзотермичен. Исходное ядро называется материнским (символ X), а получающееся после распада ядро - дочерним (Y).

Нестабильные ядра претерпевают 4 основных типа радиоактивных превращений:

а) альфа-распад - состоит в том, что тяжелое ядро самопроизвольно испускает альфа-частицу, т.е. это чисто ядерное явление. Известно более 200 альфа-активных ядер, почти все они имеют порядковый номер больше 83 (Am-241; Ra-226; Rn-222; U-238 и 235; Th-232; Pu-239 и 240). Энергия альфа-частиц тяжелых ядер чаще всего находится в интервале от 4 до 9 МэВ.

EMBED MathType

Примеры альфа-распада:

EMBED MathType EMBED MathType

б) бета-превращение - это внутринуклонный процесс; в ядре распадается одиночный нуклон, при этом происходит внутренняя перестройка ядра и появляются вылетающие из ядра β-частицы (электрон , позитрон , нейтрино , антинейтрино ). Примеры радионуклидов, претерпевающих бета-превращение: тритий (H-3); C-14; радионуклиды натрия (Na-22, Na-24); радионуклиды фосфора (P-30, P-32); радионуклиды серы (S-35, S-37); радионуклиды калия (K-40, K-44, K-45); Rb-87; радионуклиды стронция (Sr-89, Sr-90); радионуклиды йода (I-125, I-129, I-131, I-134); радионуклиды цезия (Cs-134, Cs-137).

Энергия бета-частиц варьирует в широком диапазоне: от 0 до Emax (полная энергия, выделяющаяся при распаде) и измеряется в кэВ, МэВ. Для одинаковых ядер распределение вылетающих электронов по энергиям является закономерным и называется спектром электронов β-распада, или бета-спектром; по спектру энергии бета-частиц можно провести идентификацию распадающегося элемента.

Один из примеров бета-превращения одиночного нуклона - распад свободного нейтрона (период полураспада 11,7 мин):

EMBED MathType

Виды бета-превращения ядер:

1) электронный распад: EMBED MathType .

Примеры электронного распада: EMBED MathType , EMBED MathType

2) позитронный распад: EMBED MathType

Примеры позитронного распада: EMBED MathType , EMBED MathType

3) электронный захват (К-захват, т.к. ядро поглощает один из электронов атомной оболочки, обычно из К-оболочки): EMBED MathType

Примеры электронного захвата: EMBED MathType , EMBED MathType

Характеристика корпускулярных видов излучения и особенностей их взаимодействия с веществом.

1) альфа-частицы (ядра гелия):

- заряд +2, масса 4 а.е.м.

- энергия альфа-частиц при выходе из ядра составляет 3 – 11 МэВ (эВ – электрон-вольт – внесистемная единица энергии: 1 эВ = 1,6×10-19 Дж)

- обладают высокой ионизационной способностью, образуя несколько десятков тысяч пар ионов на микрометр пробега в веществе; по мере продвижения альфа-частицы в веществе плотность ионизации возрастает в несколько раз (с 20 тыс. до 80 тыс. пар ионов на 1 мкм пути) и затем, практически при завершении пробега, резко падает.

Кривая Брегга - график, отражающий зависимость ЛПЭ альфа-излучения от пройденного в веществе пути

- траектории альфа-частиц в веществе прямолинейны в связи с их большой массой

- пробег альфа-частиц в воздухе до 11 см, в жидкостях и биологических тканях - от 10 до 100 мкм

- альфа-излучение позволяет сосредоточить значительную энергию на глубине поражённой ткани при минимальном рассеянии в здоровых тканях (используется для лечения опухолей)

- элементарная защита - любой плотный материал даже незначительной толщины (лист бумаги, кожа, одежда)

2) бета-частицы (электроны и позитроны):

- заряд -1 (электроны) и +1 (позитроны), масса пренебрежимо мала (1/1836 а.е.м.)

- энергия порядка нескольких кэВ

- удельная плотность ионизации, создаваемая бета-частицами, примерно в 1000 раз меньше, чем у альфа-частиц той же энергии; бета-частица образует несколько десятков пар ионов на микрометр пробега в веществе.

- в веществе кроме ионизации за счёт торможения электронов в веществе (особенно состоящем из атомов с большим порядковым номером), возникает тормозное рентгеновское излучение; чем выше энергия потока бета-частиц, тем более жестким будет тормозное излучение (используется в рентгеновских трубках)

-частиц при продвижении в веществе отклоняются на большие углы, траектория их очень извилиста (в связи с малой массой)

- проникающая способность у бета-частиц больше, чем у альфа-частиц (длина пробега в воздухе несколько метров, в биологической ткани - сантиметры)

- элементарная защита - тонкий слой легкого металла (алюминиевая фольга), пластмасса, стекло.

3) нейтроны:

- заряд 0 (за счет этого беспрепятственно проникают вглубь атомов, взаимодействуя непосредственно с ядрами), масса 1 а.е.м.

- энергия от 0,025 эВ до 300 и более МэВ; в зависимости от энергии выделяют медленные (энергия до 1 МэВ) и быстрые (энергия выше 1 МэВ) нейтроны

- защитные материалы: для быстрых нейтронов - вода, парафин, бетон, пластмассы; для медленных нейтронов - бораль, борная сталь, борный графит, сплав кадмия со свинцом

Возможны следующие эффекты взаимодействия нейтронного излучения с веществом:

а) упругое рассеяние - нейтрон передаёт ядру часть своей энергии и отклоняется от первоначального направления; ядро, с которым взаимодействует нейтрон (ядро отдачи), начинает двигаться и ионизировать другие атомы и молекулы.

Данный эффект характерен для быстрых нейтронов (пример - рассеяние на ядрах водорода (протонах); при этом нейтрон передаёт протону более половины своей энергии с образованием протона отдачи, поэтому для замедления быстрых нейтронов используют вещества, содержащие водород - вода, парафин).

б) неупругое рассеяние - часть кинетической энергии нейтрона тратится на возбуждение ядра отдачи, которое затем переходит в стабильное состояние, излучая гамма-квант.

в) поглощение (радиационный захват) - при взаимодействии нейтрона с ядром оно переходит в возбуждённое состояние и испускает гамма-квант или частицы (протон, нейтрон, альфа-частицу).

В результате радиационного захвата многие вещества становятся радиоактивными с образованием так называемой "наведенной" активности. Данный эффект наиболее характерен для медленных нейтронов, их лучшими поглотителями являются кадмий и бор.

Основная часть энергии заряженных частиц, взаимодействующих с веществом, идёт на его:

1) ионизацию - отрыв электрона от атома или молекулы, в результате чего они преобразуются в положительно заряженные ионы.

2) возбуждение - переход электрона на удаленную от ядра орбиталь; происходит, когда энергии излучения недостаточно для полного отрыва электрона.

Выделяют излучения:

а) прямо ионизирующие- ионизацию непосредственно производят заряженные частицы (альфа- и бета-); механизм потери энергии этих частиц в поглотителе в основном обусловлен кулоновским взаимодействием с орбитальными электронами атомов вещества.

б) косвенно ионизирующие - электрически нейтральные излучения (гамма, рентгеновское, нейтронное) ионизируют атомы среды в результате вторичных процессов.

Степень ионизации зависит как от свойств самого излучения (энергия, заряд частиц), так и от структуры облучаемого объекта. Основными свойствами излучений являются:

1) линейная плотность ионизации (удельная ионизация) - это число пар ионов, образованных заряженной частицей на микрометр пробега в веществе.

2) линейная передача энергии (ЛПЭ) - средняя энергия, теряемая заряженной частицей на единице длины её пробега в веществе. Единица измерения - килоэлектрон-вольт на микрометр пути (кэВ/мкм).

Для электрически нейтральных видов излучения ЛПЭ не применяется, но используется значение ЛПЭ вторичных заряженных частиц, образующихся в веществе.

В зависимости от ЛПЭ все излучения делятся на:

а) редкоионизирующие(ЛПЭ < 10 кэВ/мкм) - бета-, гамма- и рентгеновское излучения.

б) плотноионизирующие (ЛПЭ > 10 кэВ/мкм) - альфа- и нейтронное излучения.

ЛПЭ заряженных частиц возрастает по мере снижения их скорости, поэтому в конце пробега отдача энергии заряженной частицей максимальна.

36. Механизм образования и характеристика рентгеновского и гамма-излучения, их взаимодействие с веществом.

Ионизирующее излучение - излучение, которое создается при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы разных.

По природе ионизирующие излучения делятся на два основных вида: а) корпускулярные (альфа, бета, нейтронное)

б) электромагнитные (гамма, рентгеновское)

Тип радиоактивного превращения определяется видом частиц, испускаемых при распаде. Процесс радиоактивного распада всегда экзотермичен. Исходное ядро называется материнским (символ X), а получающееся после распада ядро - дочерним ( символ Y).

Гамма-превращение (изомерный переход) - внутриядерное явление, при котором за счет энергии возбуждения ядро испускает гамма-квант, переходя в более стабильное состояние; при этом массовое число и атомный номер не изменяются. Спектр гамма-излучения всегда дискретен. Испускаемые ядрами гамма-кванты обычно имеют энергию от десятков кэВ до нескольких МэВ. Примеры радионуклидов, претерпевающих гамма-превращение: Rb-81m; Cs-134m; Cs-135m; In-113m; Y-90m.

EMBED MathType , где индекс “m” означает метастабильное состояние ядра.

Пример гамма-превращения: EMBED MathType

Основной характеристикой для электромагнитных излучений (гамма, рентгеновское) являются энергия излучений.

Характеристика электромагнитных видов излучения и особенностей их взаимодействия с веществом:

1) гамма-излучение- представляет собой поток гамма-квантов

- имеет длину волны 10-10-10-14 м

- образуется при ядерных превращениях

- обладает высокой проникающей способностью, которая зависит как от энергии гамма-квантов, так и от свойств вещества, длина пробега в воздухе достигает сотен метров

В процессе прохождения через вещество γ-кванты (фотоны) взаимодействуют с электронами атомов, электрическим полем ядра, а также с нейтронами и протонами, входящими в состав ядра, в результате чего происходит ослабление плотности потока излучения благодаря рассеянию γ-квантов и передачи их энергии атомам среды.

Гамма-кванты относятся к косвенно ионизирующему излучению. Данное излучение в среде любой толщины полностью не поглощается, а лишь ослабляется в заданное число раз за счет различных эффектов взаимодействия:

а) фотоэлектрическое поглощение (фотоэффект) - фотоны (γ-кванты) поглощаются и полностью передают свою энергию электронам внутренней орбитали атома. Данная энергия равна энергии орбитали, расходуется на отрыв электрона и сообщение ему кинетической энергии. В результате электрон вырывается из поля атома и производит в дальнейшем ионизацию вещества. Место выбитого фотоэлектрона занимает другой электрон с более высокой орбитали, что сопровождается испусканием низкоэнергетического характеристического рентгеновского излучения или Оже-электронов.

Чем больше энергия связи электрона, чем ближе он находится к ядру, тем больше вероятность передачи ему всей энергии γ-кванта. С ростом номера элемента или его заряда вероятность фотоэффекта возрастает, а с увеличением энергии излучения она быстро падает.

Возникновение фотоэффекта наиболее характерно для мягкого γ-излучения (до 0,5 Мэв). Т.к. для биологических тканей энергия выбивания электрона не превышает 0,5 Мэв, данный эффект наиболее вероятен при поглощении мягкого γ-излучения.

б) комптоновское рассеивание (Комптон-эффекта) - фотон (γ-квант) передает электрону лишь часть своей энергии, а сам меняет направление своего движения. Выбитый электрон производит в дальнейшем ионизацию. Затем вторичный фотон может вновь претерпевать эффект Комптона и т.д.

В отличие от фотоэффекта такое рассеивание происходит, в основном, на электронах внешних оболочек атомов с минимальной энергией связи. С ростом энергии излучения вероятность такого взаимодействия снижается, но медленнее, чем при фотоэффекте.

Комптон-эффект наиболее вероятен при энергии γ-квантов 0,5-1 МэВ.

в) образовании пары "электрон-позитрон"- при значительной энергии γ-кванта (>1 МэВ) он взаимодействует с атомным ядром и в его поле преобразуется в пару частиц - электрон и позитрон, которые и производят в дальнейшем ионизацию. Позитрон, встречая на своем пути электрон, может соединиться с ним и превратиться в 2 фотона (эффект аннигиляции). Образующиеся фотоны поглощаются средой в результате эффекта Комптона или фотоэффекта.

2) рентгеновское излучение:

-имеет длину волны 10-9-10-12 м; чем меньше длина волны, тем выше энергия излучения и больше его проникающая способность

- образуется за счет изменения энергетического состояния электрона при его переходе на энергетически более выгодную орбиталь (характеристическое рентгеновское излучение) или при столкновении заряженных частиц с частицами вещества, через которое они проходят (тормозное рентгеновское излучение)

Защитные материалы для электромагнитных видов излучения - тяжелые металлы, бетон, грунт.

Дозиметрия. Виды доз.

Дозиметрия - это измерение дозы или ее мощности.

Доза ионизирующего излучения - количество энергии ионизирующей радиации, поглощенной единицей массы любой облучаемой среды.

Мощность дозы - доза излучения в единицу времени.

Основная задача дозиметрии - определение дозы излучения в различных средах и в тканях живого организма.

Значение дозиметрии:

- необходима для количественной и качественной оценки биологического эффекта доз ионизирующих излучений при внешнем и внутреннем облучении организма

- необходима для обеспечения радиационной безопасности при работе с радиоактивными веществами

- с ее помощью можно обнаружить источник излучения, определить его вид, количество энергии, а также степень воздействия излучения на облучаемый объект.

Виды доз:

а) экспозиционная доза (Х) - количественная характеристика поля источника ионизирующего излучения (гамма или рентгеновского), характеризующая величину ионизации сухого воздуха при атмосферном давлении.

Кулон на килограмм (Кл/кг, C/kg) -системная единица экспозиционной дозы; 1 Кл/кг равен эксп-ной дозе фотонного излучения, при которой сумма электрических зарядов всех ионов одного знака, созданных электронами,освобожденными в облученном воздухе массой 1 кг, при полном использовании ионизирующей способности всех электронов, равна 1 Кл.

Рентген (Р, R) - традиционная (внесистемная) единица экспозиционной дозы; 1 рентген равен экспозиционной дозе рентгеновского или гамма-излучения в воздухе, при которой в результате полной ионизации в 1 см3 сухого атмосферного воздуха при температуре 0о С и давлении 760 мм рт. ст. (т.е. в 0,001293 г сухого атмосферного воздуха) образуются ионы, несущие заряд, равный 1 единице заряда СГС каждого знака.

СГС - система единиц измерения, в которой существуют три независимые величины: сантиметр-грамм-секунда.

Соотношение единиц: 1 Р = 2,58*10-4 Кл/кг (точно); 1 Кл/кг = 3,88*103 Р (приблизительно).

Мощность экспозиционной дозы - величина, выраженная в мР/ч или мкР/ч. Обычные фоновые показатели мощности эксп-ой дозы для Беларуси - до 18-20 мкР/ч. По традиции экспозиционную дозу использовали в рентгенодиагностике благодаря тому, что ионизирующая способность рентгеновского излучения для воздуха и биологической ткани приблизительно одинакова. Однако, при переходе к высокоэнергетическим типам излучения, выяснилась ограниченность использования этой характеристики при оценке поглощенной дозы, особенно в живых организмах. В связи с этим экспозиционная дозаприменяется для оценки поля источника излучения, а для определения взаимодействия ионизирующих излучений со средой используетсяпоглощенная доза.

б) поглощенная доза (D) - количество энергии, поглощаемое единицей массы облучаемого вещества.

Джоуль на килограмм (Грей, Гр, Gy) - системная единица поглощенной дозы. 1 Дж/кг = 1 Гр.

Рад (rad, rd - radiation absorbed dose - поглощенная доза излучения) - традиционная (внесистемная) единица поглощенной дозы.

Соотношение единиц: 1 рад = 0,01 Гр.

Для мягких тканей человека в поле рентгеновского или гамма-излучения поглощенная доза в 1 рад примерно соответствует экспозиционной в 1 P.

Поглощенная доза не зависит от вида и энергии ионизирующего излучения и определяет степень радиационного воздействия, т.е. является мерой ожидаемых последствий облучения.

Учитывая существенные различия в механизме взаимодействия разных типов излучения с веществом, ионизирующей способности и т.д., следует ожидать, что одна и та же поглощенная доза может дать разный биологический эффект. Для количественной оценки такого различия вводятся понятия: “взвешивающие коэффициенты для различных видов излучения (WR)” и “эквивалентная доза”.

в) эквивалентная доза (HTR) - мера выраженности биологического эффекта облучения. При расчете эквивалентной дозы используют взвешивающие коэффициенты как множители поглощенной дозы:

EMBED MathType , где HTR -эквивалентная доза в органе или ткани Т, созданная излучением R; DTR- средняя поглощенная доза от излучения R в ткани или органе T; WR – взвешивающий коэффициент для излучения R.

Взвешивающие коэффициенты (WR) позволяют учесть относительную эффективность различных видов излучения в индуцировании биологических эффектов.

Так как WR - безразмерный множитель, системная единица для эквивалентной дозы та же, что и для поглощенной дозы - Дж/кг (специальное название - Зиверт: Зв, Sv)

Бэр (rem) -внесистемная единица эквивалентной дозы (бэр - биологический эквивалент рада).

Соотношение единиц: 1 бэр = 0,01 Зв.

Взвешивающие коэффициенты для отдельных видов излучения.

Вид излучения и диапазон энергии Взвешивающий коэффициент WR
Фотоны любых энергий
Электроны и мюоны любых энергий
Альфа-частицы, осколки деления, тяжелые ядра
Нейтроны с энергией: менее 10 кэВ  
от 10 кэВ до 100 кэВ
от 100 кэВ до 2 МэВ
от 2 МэВ до 20 МэВ
более 20 МэВ

Риск развития стохастических последствий облучения организма человека зависит не только от эквивалентной дозы, но и от радиочувствительности тканей или органов, подвергшихся облучению. Радиочувствительность органов и тканей учитывает эффективная доза.

г) эффективная доза (Е) - величина воздействия ионизирующего излучения, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности; представляет сумму произведений эквивалентных доз в тканях и органах тела на соответствующие взвешивающие коэффициенты:

EMBED MathType ,

где HT - эквивалентная доза в ткани или органе T; WT - взвешивающий коэффициент для органа или ткани T.

Взвешивающий коэффициент WT характеризует относительный вклад данного органа или ткани в суммарный ущерб здоровью из-за развития стохастических эффектов. Сумма WT равна 1.

Системная единица эффективной дозы - зиверт (Зв, Sv); внесистемная единица – бэр. 1 Зв равен 100 бэр.

Для оценки эффектов облучения группы людей используют коллективные дозы:

а) коллективная эквивалентная доза (ST) в ткани T - используется для выражения общего облучения конкретной ткани или органа у группы лиц; она равна произведению числа облученных лиц на среднюю эквивалентную дозу в органе или ткани.

б) коллективная эффективная доза (S) - относится к облученной популяции в целом; она равна произведению числа облученных лиц на среднюю эффективную дозу.

В определении коллективной эквивалентной и коллективной эффективной доз не указано время, за которое получена доза. Поэтому при расчете коллективных доз всегда должно быть четкое указание на период времени и группу лиц, по которым проводился данный расчет.

Коллективные дозы используют для оценки лучевой нагрузки на популяцию и риска развития стохастических последствий действия ионизирующих излучений. Единицы коллективных доз – человеко-зиверт и человеко-бэр.

«Подушная доза» (per caput dose, Зв) - значение коллективной дозы, разделенное на число членов облученной группы.

Типы воздействия радионуклидов чернобыльского выброса на население республики. Формирование доз облучения населения после аварии на ЧАЭС. Общие закономерности поступления, распределения и выведения радионуклидов из организма человека.

Типы воздействия радионуклидов:

1. внешнее гамма-облучение от радиоактивного облака - было недолгим и продолжалось до формирования радиоактивного следа на местности и объектах окружающей среды; вклад в формирование дозыв первый послеаварийный год2,5%.

2. ингаляционное поступление радионуклидов в организм человека - формирует 4,5% дозы за счёт внутреннего облучения организма. Аэрозольное загрязнение атмосферного воздуха делится на 2 этапа:

а) относительно кратковременный - момент выброса газо-аэрозольной струи в атмосферный воздух, формирование и перенос радиоактивных облаков до момента их осаждения на поверхность земли, воды, объекты окружающей среды (ингаляционное поступление радионуклидов из радиоактивного облака).

б) непрерывный - вторичное загрязнение атмосферы за счёт ветрового подъёма пыли.

Загрязнение приземного слоя атмосферы в результате ветровой эрозии почвы является дополнительным фактором загрязнения территории радионуклидами. Мельчайшие аэрозольные частички переносятся с воздухом на большие расстояния вследствие медленной седиментации. В ряде случаев перенос радиоактивной пыли обуславливал повторное загрязнение дезактивированных территорий. Особую опасность вторичное загрязнение атмосферы радионуклидами за счет ветрового подъема пыли представляет для населения, постоянно проживающего и работающего на загрязненной территории.

3. внешнее гамма-излучение от осевших на земную поверхность и объекты окружающей среды радионуклидов - обуславливает самое длительное и интенсивное облучение, формирует около 50-60% дозы у населения. Определяется, в основном, гамма-излучением цезия-137 и другими гамма-излучающими радионуклидами.

Основные факторы, уменьшающие внешнее гамма-излучение:

1) естественный распад радионуклидов - в настоящее время доза на организм человека формируется за счет долгоживущих радионуклидов:

а) цезия-137 (период полураспада 30 лет)

б) стронция-90 (период полураспада 29,1 лет)

в) трития (период полураспада 12 лет)

г) углерода-14 (период полураспада 5730 лет)

д) плутония-239 (период полураспада более 24000 лет)

2) миграция радионуклидов вглубь почвы - она незначительная: основная масса цезия-137 спустя 12 лет после аварии сосредоточена в верхнем 5-сантиметровом почвенном слое, основная часть радиостронция находится в поверхностных слоях (0-1 см) почвы. Наиболее интенсивно вертикальная миграция протекает в торфяниках; прогнозы показывают, что самоочищение почв вследствие данного процесса будут происходить крайне медленно. Нахождение радионуклидов в корнеобитаемом слое, а также увеличение относительного количества обменного стронция в поверхностных слоях почв будут длительное время обуславливать интенсивную миграцию радионуклидов по пищевым цепочкам.

4. попадание радионуклидов в организм по пищевым цепочкам -данный тип воздействия имеет особое значение для РБ, связанный с особенностями почв (преимущественно на Полесье). Среди загрязненных радионуклидами земель РБ больше половины составляют почвы легкого гранулометрического состава, характеризующиеся низкой емкостью поглощения, малым содержанием гумуса и вторичных глинистых минералов. В легких почвах республики радионуклиды цезия-137 и стронция-90 аномально подвижны, т.е. они плохо связываются частицами почвы и поэтому коэффициент перехода их в растения высокий. Хорошо фиксирует радионуклиды чернозем, глинистая почва, а в Белорусском Полесье почва песчаная, подзолистая, торфяно-болотная, т.е. легкая. Все это определяет высокие уровни накопления радионуклидов в местных продуктах питания и высокие дозовые нагрузки на организм проживающего там населения (Лельчицкий район Гомельской области, Столинский и Лунинецкий районы Брестской области).

Н (недели)

3. Г (годы) - соединения меди, серебра, золота, цинка, кадмия, иттрия, актиния, циркония и металлы платиновой группы.

2) алиментарный - через желудочно-кишечный тракт с водой и пищей. Данным путем в организм поступают хорошо растворимые радионуклиды (водород, щелочные металлы, галогены, благородные газы, все элементы второго периода, кроме берилия). Хуже всасываются щелочноземельные элементы, а также цинк, кадмий и ртуть. Плохорастворимые радионуклиды покидают кишечник в течение 1-4 дней, не успевая создать значительные дозы облучения (элементы третьей группы, частично четвертой, пятой, лантаноиды, актиноиды), они способны образовывать коллоиды и труднорастворимые гидроксиды, которые препятствуют их всасыванию в желудочно-кишечном тракте. Зато та часть радионуклидов, которая попала в организм, по типу коллоидальной адсорбции очень прочно удерживается в тканях и период биологического полувыведения из организма для таких радионуклидов составляет десятки лет.

3) через кожу - проницаемость кожи для радиоактивных веществ зависит от:

1. агрегатного состояния радионуклидов, склонности их к гидролизу и комплексообразованию - водорастворимые и жирорастворимые соединения радионуклидов всасываются через кожу быстро, скорость их проникновения сравнима со скоростью всасывания в кишечнике (наибольшая скорость проникновения у йода-131, также активно проникают в кожу изотопы молибдена, трития и элементов I и VI групп).

2. кислотности раствора, в котором находятся радиоактивные вещества

3. состояния кожного барьера и длительности контакта с ним радионуклидов - при повреждении кожи ее проницаемость для радионуклидов увеличивается. Для уменьшения контакта радионуклидов с кожей необходима своевременная дезактивация кожных покровов (например, обильная обработка кожных покровов водой и моющими средствами).

Особенность поведения в организме химических элементов - достаточно постоянное и строгое распределение их по системам, органам и тканям. Стабильные и радиоактивные изотопы одних и тех же элементов абсолютно одинаково ведут себя в организме, поэтому накапливаются они в одних и тех же органах и тканях.

В основу распределения положены принципы максимального или преимущественного содержания радионуклида в органе.

Типы распределения радионуклидов в организме:

а) равномерный - более половины обнаруженного в организме радионуклида распределено равномерно, характерен для химических элементов I группы, II побочной группы, III главной подгруппы Периодической системы, за исключением серебра, поступающего преимущественно в печень вследствие коллоидообразования (Сs-137, С-14, Н-3, Ru-106)

б) скелетный - характерен для всех элементов II главной подгруппы и III побочной подгруппы (Sr-90, Zr-95, Сe-144, Рu-239, Аm-241, Ra-226,Pb-210)

в) щитовидный (I-131)

г) ретикуло-эндотелиальный - характерен для лантаноидов и актиноидов (Рu-239, Аm-241, Zn-65, Fe-55)

д) почечный - характерен для висмута, урана, кадмия, мышьяка (U-238, Pb-210, Be-7)

Данные типы распределения в организме касаются только той доли радионуклидов, которые поступают в кровь; при ингаляционном поступлении радионуклидов, их содержание и концентрация, как правило, максимальны в легких.

Закон Республики Беларусь «О правовом режиме территорий, подвергшихся радиоактивному загрязнению в результате катастрофы на ЧАЭС». Принципы проживания населения на загрязненных радионуклидами территориях.

После аварии на ЧАЭС правительство РБ разработало Программы по ликвидации в Беларуси последствий катастрофы на ЧАЭС на 1990-1995 гг. и на 1996-2000 гг. Основная задача данных программ - создание безопасных для здоровья человека условий жизнедеятельности в районах, подвергшихся радиоактивному загрязнению.

Верховным Советом РБ приняты законы:

1."О социальной защите граждан, пост

Наши рекомендации