Анаэробное окисление глюкозы
Анаэробный гликолиз включает 2 этапа:
- Активация глюкозы с затратой АТФ
- Окислительный этап, идущий с образованием АТФ
На первом этапе глюкоза расщепляется на 2 триозы:
Таким образом, на первом этапе гликолиза на активирование глюкозы затрачивается 2 молекулы АТФ и образуется 2 молекулы 3-фософоглицеринового альдегида.
На второй стадии окисляются 2 молекулы 3-фосфоглицеринового альдегида до двух молекул молочной кислоты.
Значение лактатдегидрогеназной реакции (ЛДГ) заключается в том, чтобы в безкислородных условиях окислить НАДН2 в НАД и сделать возможным протекание дегидрогеназной реакции 3-фосфоглицеринового альдегида.
Суммарное уравнение гликолиза:
глюкоза + 2АДФ + 2Н3РО4 → 2лактат + 2АТФ + 2Н2О
Гликолиз протекает в цитозоле. Его регуляцию осуществляют ключевые ферменты –фософофруктокиназа, пируваткиназа. Эти ферменты активируются АДФ и НАД, угнетаются АТФ и НАДН2.
Энергетическая эффективность анаэробного гликолиза сводится к разнице между числом израсходованных и образовавшихся молекул АТФ. Расходуется 2 молекулы АТФ на молекулу глюкозы в гексокиназной реакции и фосфофруктокиназной реакции. Образуется 2 молекулы АТФ на одну молекулу триозы (1/2 глюкозы) в глицерокиназной реакции и пируваткиназной реакции. На молекулу глюкозы (2 триозы) образуется соответственно 4 молекулы АТФ. Общий баланс: 4 АТФ – 2 АТФ = 2 АТФ. 2 молекулы АТФ аккумулируют в себе ≈ 20 ккал, что составляет около 3% от энергии полного окисления глюкозы (686 ккал).
Несмотря на сравнительно невысокую энергетическую эффективность анаэробного гликолиза, он имеет важное биологическое значение, состоящее в том, что это единственный способ образования энергии в безкислородных условиях. В условиях дефицита кислорода он обеспечивает выполнение интенсивной мышечной работы в начальный период физической нагрузки.
В тканях плода анаэробный гликолиз очень активен в условиях дефицита кислорода. Он остаётся активным в период новорожденности, постепенно сменяясь на аэробное окисление.
Дальнейшее превращение молочной кислоты
- При интенсивном поступлении кислорода в аэробных условиях молочная кислота превращается в ПВК и через ацетил КоА включается в цикл Кребса, давая энергию.
- Молочная кислота транспортируется из мышц в печень, где используется на синтез глюкозы – цикл Р. Кори.
Цикл Кори
- При больших концентрациях молочной кислоты в тканях для предотвращения закисления (ацидоза) она может выделяться через почки и потовые железы.
Аэробное окисление глюкозы
Аэробное окисление глюкозы включает 3 стадии:
1 стадия протекает в цитозоле, заключается в образовании пировиноградной кислоты:
Глюкоза → 2 ПВК + 2 АТФ + 2 НАДН2;
2 cтадия протекает в митохондриях:
2 ПВК → 2 ацетил - КоА + 2 НАДН2;
3 стадия протекает внутри митохондрий:
2 ацетил - КоА → 2 ЦТК.
В силу того, что 2 молекулы НАДН2 на первом этапе образуются в цитозоле, а окисляться они могут только в митохондриальной дыхательной цепи, необходим перенос водорода от НАДН2 цитозоля во внутримитохондриальные цепи переноса электронов. Митохондрии непроницаемы для НАДН2, поэтому для переноса водорода из цитозоля в митохондрии существуют специальные челночные механизмы. Их суть отражена на схеме, где Х окисленная форма переносчика водорода, а ХН2 – его восстановленная форма:
В зависимости от того, какие вещества участвуют в переносе водорода через митохондриальную мембрану, различают несколько челночных механизмов.
Глицерофосфатный челночный механизм, в котором происходит потеря двух молекул АТФ, т.к. вместо двух молекул НАДН2 (потенциально 6 молекул АТФ) образуется 2 молекулы ФАДН2 (реально 4 молекулы АТФ).
Малатный челночный механизм работает на вынос водорода из митохондриального матрикса:
Энергетическая эффективность аэробного окисления.
- глюкоза → 2 ПВК + 2 АТФ + 2 НАДН2 (→8 АТФ).
- 2 ПВК→ 2 ацетил КоА + 2 НАДН2 (→6 АТФ).
- 2 ацетил КоА → 2 ЦТК (12*2 = 24 АТФ).
Итого возможно образование 38 молекул АТФ, из которых необходимо вычесть 2 молекулы АТФ, теряемые в глицерофосфатном челночном механизме. Таким образом, образуется 36 АТФ.
36 АТФ (около 360 ккал) составляют от 686 ккал. 50-60% - это энергетическая эффективность аэробного окисления глюкозы, что в двадцать раз выше, чем эффективность анаэробного окисления глюкозы. Поэтому в тканях при поступлении кислорода анаэробный путь блокируется, и это явление называется эффектом Пастера. У новорожденных аэробный путь начинает активироваться в первые 2-3 месяца жизни.
6.5. 2. Биосинтез глюкозы (глюконеогенез)
Глюконеогенез - это путь синтеза глюкозы в организме из неуглеводных веществ, который способен длительно поддерживать уровень глюкозы при отсутствии углеводов в пищевом рационе. Исходными веществами для него являются молочная кислота, ПВК, аминокислоты, глицерин. Наиболее активно глюконеогенез протекает в печени и почках. Этот процесс внутриклеточно локализован частично в цитозоле, частично в митохондриях. В целом глюконеогенез является процессом обратным гликолизу.
В гликолизе имеются три необратимых стадии, катализируемых ферментами:
· пируваткиназа;
· фосфофруктокиназа;
· гексокиназа.
Поэтому в глюконеогенезе вместо этих ферментов имеются специфические ферменты, которые осуществляют «обход» этих необратимых стадий:
- пируваткарбоксилаза и карбоксикиназа («обходят» пируваткиназу);
- фруктозо-6-фосфатаза («обходит» фосфофруктокиназу);
- глюкозо-6-фосфатаза («обходит» гексокиназу).
Глюкозо-6-фосфат под действием глюкозо-6-фосфатазы переходит в глюкозу, которая выходит из гепатоцитов в кровь.
Ключевыми ферментами для глюконеогенеза являются пируваткарбоксилаза и фруктозо-1,6-дифосфатаза. Активатором для них являются АТФ (на синтез одной молекулы глюкозы необходимо 6 молекул АТФ).
Таким образом, высокая концентрация АТФ в клетках активирует глюконеогенез, требующий затраты энергии и в то же время ингибирует гликолиз (на стадии фосфофруктокиназы), ведущий к образованию АТФ. Данное положение иллюстрирует приведенный ниже график.
Витамин Н
В глюконеогенезе участвует витамин Н (биотин, антисеборейный витамин), который по химической природе представляет собой серосодержащий гетероцикл с остатками валериановой кислоты. Он широко распространён в животных и растительных продуктах (печень, желток). Суточная потребность в нём составляет 0,2 мг. Авитаминоз проявляется дерматитом, поражением ногтей, увеличением или уменьшением образования кожного жира (себорея). Биологическая роль витамин Н:
- участвует в реакциях карбоксилирования;
- участвует в реакциях транскарбоксилирования;
- участвует в обмене пуриновых оснований, некоторых аминокислот.
Глюконеогенез активен в последние месяцы внутриутробного развития. После рождения ребёнка активность процесса возрастает, начиная с третьего месяца жизни.