Структурная организация генома вируса
У вирусов роль хромосом выполняет нить нуклеиновой кислоты (ДНК или РНК), у одних она цельная, у других (грипп, рео- ареновирус) – фрагментированная. Отдельные участки нуклеиновой кислоты, ответственные (детерминирующие) за синтез определенного белка, получили название генов. Простейшие из известных вирусов содержат от трех до пяти генов (например, ДНК-содержащий вирус полиомы; у пикорнавирусов 6—8 генов). Однако у более сложного вируса (например, крупного бактериофага Т4) более 30 генов контролируют синтез белков оболочки и не менее 15 — синтез нуклеотидных предшественников; для размножения этого фага требуется участие примерно сотни генов.
Ген не является неделимым. У него имеются более мелкие участки (мутоны, реконы), несущие определенные функции. Как известно, ген является носителем одновременно трех свойств:
1) контролирует тот или иной признак организма (функция),
2) обменивается в скрещиваниях (рекомбинация) и
3) изменяется (мутация).
Понятие цистрон соответствует понятию ген - единице функции, т. е. соответствует информации об одном белке.
Синтез ферментов у вирусов закодирован в генах. Любой фермент (белок) может синтезироваться только в том случае, если в нуклеиновой кислоте имеется соответствующий ген, кодирующий синтез данного фермента. Последовательность работы цистронов определяется индукцией или репрессией.
Под геномом вируса понимают совокупность всех генов данного вируса. У одних вирусов геном образован одной молекулой нуклеиновой кислоты (ДНК или РНК), у других — несколькими молекулами (вирусы гриппа, рео- и аренавирусы).
Фенотип — это совокупность всех внешних и внутренних признаков и функции данного вируса. Генотип же определяется только структурой наследственного материала — ДНК или РНК, т. е. последовательностью нуй-леотидов в их молекулах или кодом белкового синтеза. Фенотип вируса не является его постоянным свойством. Генотип же — это постоянное свойство вируса, и меняется он в результате мутаций, происходящих в-геноме. Мутационные изменения в геноме вируса влекут за собой и изменения его фенотипа.
Способы увеличения информационной емкости вирусного генома. В отличие от полицистронных иРНК прокариотов иРНК эукариотов являются моноцистронными, т.е. реализуется принцип «один ген – одна молекула иРНК – один белок». Однако у некоторых клеточных иРНК и часто у вирусных иРНК этот принцип нарушается, и иРНК может направлять синтез двух полипептидов.
У многих вирусов молекулярная масса синтезирующихся белков превышает теоретически рассчитанную. Этот феномен объясняется наличием у вирусов механизмов, позволяющих получить развернутую информацию при максимальной экономии генетического материала; подобные механизмы выработаны в процессе эволюции вирусов как генетических паразитов.
Способами увеличения информации являются:
1) двукратное считывание одной и той же иРНК, но с другого иницирующено кодона;
В составе иРНК обычно встречается несколько инициирующих кодонов. В составе иРНК обычно встречается несколько инициирующих кодонов. В соответствии с принятой в настоящее время гипотезой «сканирующей модели» малая рибосомальная субъединица связывается с иРНК около 5¢-конца и скользит вниз до встречи с инициирующим кодоном. Однако инициация в большинстве случаев происходит не с первого инициирующего кодона, а с последующего АУГ - кодонов. «Правильный» функционирующий АУГ- кодон узнается рибосомой благодаря окружающим его последовательностям («фланкирующим» нуклеотидам). В том случае, если первый инициирующий кодон находится в менее благоприятном окружении, чем последующие АУГ – кодоны, большинство малых рибосомальных субъединиц пройдут этот кодон и начнут инициацию трансляции с последующих АУГ – кодонов, однако некоторые субъединицы начнут инициацию с первого АУГ – кодона. В этом случае одна иРНК может направить синтез двух белков разной длины. Такие иРНК имеются у многих вирусов.
2) сдвиг рамки трансляции;
Трансляция может происходить без сдвига рамки и со сдвигом ее. Генетический код является триплетным, это означает, что три нуклеотида, составляющих триплет или кодон, кодируют одну аминокислоту. В том случае, если триплеты сохранены и генетический код не изменился, при трансляции с двух разных инициирующих кодонов будут синтезироваться полипептиды, представляющие собой укороченный участок первого полипептида (трансляция без сдвига рамки).
В том случае, если произошел сдвиг на один или два нуклеотида, меняется смысл всех кодонов (триплетов), стоящих за местом сдвига. В этом случае одна молекула иРНК может транслироваться с образованием двух уникальных белков, т.е. таких, у которых нет идентичных аминокислотных последовательностей.
Таким образом, общее число триплетов в составе молекулы нуклеиновой кислоты может быть меньше суммы числа триплетов, входящих в состав всех генов. Более точные представления о числе генов можно получить путем биохимического и генетического анализов.
4) сплайсинг;
5) сплайсинг со сдвигом рамки широко распространен у ряда вирусов. В результате сплайсинга и сдвига рамки иРНК генов транслируются с образованием двух белков
Одним из способов экономии генетического материала является нарезание полипептида - предшественника на участки разной длины, в результате чего образуются разные полипептиды с перекрывающимся аминокислотными последовательностями.
4)транскрипция с перекрывающихся областей ДНК и и др.
В результате перекрывания генов и сдвига рамки трансляции «размыкаются» границы генов, и понятие «ген» в известном смысле утрачивает первоначальное значение как дискретный фрагмент генома и приобретает скорее функциональное значение.
Наследственность у вирусов
Наследственность — это свойство организмов обеспечивать материальную и функциональную преемственность между поколениями, а также обусловливать специфический характер индивидуального развития. Изменчивость — свойство, противоположное наследственности. Изменчивость вирусов может быть обусловлена мутацией генов.
Мутации у вирусов
В основе наследственного изменения свойств вирусов могут лежать два процесса:
1) мутация, т. е. изменение последовательности нуклеотидов в определенном участке генома вируса, ведущее к фенотипически выраженному изменению свойства, и
2) рекомбинация, т. е. обмен генетическим материалом между двумя близкими, но отличающимися по наследственным свойствам вирусами.
Мутация — изменчивость, связанная с изменением самих генов. Она может иметь прерывистый, скачкообразный характер и приводит к стойким изменениям наследственных свойств вирусов.
Все мутации вирусов делятся на две группы:
- спонтанные и
- индуцированные;
По протяженности их делят на:
- точечные и
-аберрационные (изменения, затрагивающие значительный участок генома).
Точечные мутации обусловлены заменой одного нуклеотида (для РНК-содержащих вирусов) или одной пары комплементарных нуклеотидов (для ДНК-содержащих вирусов). Такие мутации могут иногда ревертировать с восстановлением исходной структуры генома.
Однако мутационные изменения способны захватывать и более крупные участки молекул нуклеиновых кислот, т. е. несколько нуклеотидов. В этом случае тоже могут происходить выпадения, вставки и перемещения (транслокации) целых участков и даже повороты участков на 180° (так называемые инверсии). Это будут уже более крупные перестройки в структуре нуклеиновых кислот, а следовательно, и нарушения генетической информации.
Следует отметить, что не всегда точечные мутации реализуются. Имеется ряд причин, в силу которых такие мутации могут не проявляться. Одна из них — вырожденность генетического кода. Как уже указывалось, код белкового синтеза вырожден, т, е. некоторые аминокислоты могут кодироваться несколькими триплетами (кодонами). Например, аминокислота лейцин может кодироваться шестью триплетами. Вот почему если в молекуле РНК вследствие каких-то воздействий произошла замена триплета ЦУУ на ЦУЦ, ЦУА на ЦУГ, то в молекуле синтезируемого белка все равно включится аминокислота лейцин. Поэтому ни структура белка, ни его биологические свойства не нарушатся.
Другое дело, когда какая-то аминокислота кодируется всего одни триплетом, например, синтез триптофана кодируется только одним триплетом УГГ и замены, т. е. синонима, не имеет. В этом случае в белок включается какая-нибудь иная аминокислота, что может привести к появлению мутантного признака.
Как спонтанные, так и индуцированные мутации делят также на прямые и обратные (реверсии). Прямые мутации меняют фенотип, а обратные его восстанавливают.
Спонтанные мутации
Спонтанные мутации у вирусов возникают в популяции без искусственного вмешательства со стороны экспериментатора. Не может быть абсолютно однородных популяций. Однородность относительна, поэтому в вирусной популяции в процессе ее развития спонтанные мутанты возникают с определенной вероятностью.
Частота мутаций одного и того же признака может быть различной в зависимости от штамма. Так, частота мутаций по признаку rсt 40° у штамма W-Fox вируса полиомиелита составляла 2,4´10-5, тогда как у штамма.Ch-AT она была на порядок ниже — 2,0´10-6.
Каковы причины и механизмы возникновения спонтанных мутаций? По мнению Уотсона и Крика, спонтанные мутации могут возникать вследствие таутомерного (таутомерия – один из видов изомерии, при которой изомеры легко переходят друг в друга) превращения оснований, входящих в состав ДНК. Так, например, таутомерный сдвиг в положении атома водорода у аденина приводит к тому, что аденин при репликации спаривается не с тимином, а с гуанином. Такая ошибка при спаривании оснований приводит при последующих репликациях к замене пары AT и ГЦ.
Спонтанные мутации, возникшие в одном и том же гене, распределяются по его длине неравномерно. Одни участки гена мутируют часто, их называют «горячими» точками, другие же — редко. Кроме того, спонтанные мутации при репликации могут быть обусловлены ошибками в работе ферментов —ДНК- или РНК-полимераз.
Изучение мутационной изменчивости того или иного вируса состоит в определении физико-химических и биологических свойств мутанта. (вирулентностью, реактогенностью, иммуногенностью, способность репродукции в той или иной системе, термо-резистентность, гемагглютинирующие, гемолизирующие и другие свойства).
Мутации у вирусов могут возникать и в результате адаптации их к необычным биологическим системам in vitro (культуры клеток) и in vivo (животные, куриные эмбрионы).
Мутации при пассажах на животных. Стабильные высокоиммуногенные штаммы вирусов получают методом длительной адаптации к лабораторным, естественно-восприимчивым или невосприимчивым животным. Так, был получен вакцинный штамм (virus fixe) бешенства.
При адаптации вирусов к естественно-невосприимчивым видам животных или к гетерогенным тканям экспериментально-восприимчивых животных решающее значение имеют вид и возраст животного, способ введения вируса и его свойства, а также свойства штамма.
Для успеха адаптации вирусов к организму лабораторных животных существенное значение имеет ослабление резистентное их путем воздействия кортизоном, температурой, облучением g-лучами и т. п.
Мутации при пассажах в культурах клеток. В культурах клеток и тканей успешно выращиваются и аттенуируются многие вирусы.
Причины возникновения мутаций в процессе адаптации. Изменение свойств вируса в процессе пассажей происходит ступенчато. В первых пассажах обнаруживают главным образом вирионы, изменившие какой-либо один генетический признак; с увеличением пассажей в популяции выявляют вирионы, изменившие два и более генетических признака; по мере пассирования количество таких частиц постоянно возрастает, и в дальнейшем у подавляющего большинства вирусных частиц наблюдают изменение многих генетических признаков.
В основе механизма наследственной изменчивости вирусной популяции при пассажах лежат два процесса: мутация и селекция, причем и в том, и в другом процессе важную роль играет внешняя среда, являющаяся одновременно индуктором мутации и селективным фактором.
Если гетерогенную вирусную популяцию, имеющую в своем составе измененные и исходные вирусные частицы, культивировать в обычных условиях, то это приводит к ее реверсии.
Наконец, накопилось большое число фактов об изменчивости вируса, вызываемой хозяином (host-controlled variation). Эти изменения заключаются в том, что клетка влияет на характер синтезирующих в ней компонентов вируса. Такие модификации не затрагивают нуклеотидную последовательность вирусного генома.
Таким образом, клетка хозяина может существенно влиять на фенотип вируса или блокировать (частично или полностью) его репродукцию.
Индуцированные мутации
Возникают при действии на вирус (на его вегетативную или покоящуюся форму) различными химическими и физическими мутагенами, а также в процессе адаптации его к необычным биологическим системам (при адаптационной изменчивости).
Применение искусственных мутагенов имеет два преимущества. Во-первых, они вызывают мутации в десятки и сотни раз эффективнее, чем природные факторы, и, во-вторых, действие некоторых искусственных мутагенов имеет известную направленность, что позволяет заранее предвидеть, на какие элементы структуры нуклеиновых кислот и каким образом действует тот или иной мутаген и какие изменения в них вызовет.
Химические мутагены. Предложено разделить мутагены на две основные группы:
1) мутагены, реагирующие с нуклеиновой кислотой только во время ее репликации (аналоги пуриновых и пиримидиновых оснований);
2) мутагены вступающие в реакцию с покоящейся молекулой нуклеиновой кислоты, но требующие для формирования мутаций последующих ее репликаций (азотистая кислота, гидроксиламин, алкилирующие соединения).
В последние годы синтезирован и изучен целый ряд химических соединений — супермутагенов (нитрозопроизводных мочевины — нитрозогуанидин и его производные)
Молекулярные механизмы мутагенного действия химических соединений. В основе молекулярных изменений вирусной нуклеиновой кислоты, приводящих к мутации, лежат два основных процесса замена основания и выпадение или вставка основания. Различает два типа замены оснований, входящих в состав вирусной нуклеиновой кислоты: простую (транзиция) и сложную (трансверсия). При простой замене на место одного пуринового основания встает другое (например, вместо аденина — гуанин) или вместо одного пиримидинового основания — другое пиримидиновое основание (вместо цитозина — урацил).
При сложной замене — трансверсии вместо пуринового основания появляется пиримидиновое или пиримидиновое основание заменяется пуриновым.
Другой процесс — выпадение (делеция) или вставка оснований— ведет к более глубоким изменениям генетического кода, чем простая - замена оснований. Мутационные повреждения в одном участке генома нередко приводят к изменению нескольких генетических признаков, имеющих различное фенотипическое проявление (плейотропия).
Мутагенное действие аналогов азотистых оснований (5-бромурацила, 5-фторурацила, 5-йодурацила, 2-аминопурина, 2,6-диаминопурина). Аналоги основании индуцируют мутации только при воздействии на реплицирующиеся молекулы ДНК и РНК. Из этой группы соединений наиболее хорошо изучены 5-бромурацил и 2-аминопурин. Tимин (Т) является урацилом (У), в котором атом водорода (Н) в одной из СН - групп заменен метильной группой (СН3). Другими словами, тимин — это метилурацил. Однако в урациле этот атом водорода можно заменить и другим атомом, например брома (Вr). В результате такой замены получается новое соединение — бромурацил (БУ), который является аналогом тимина, так как структура основного ядра (кольца) у обоих соединений совершенно одинакова, а различие заключается лишь в одной группе (Вr вместо СН3).
Мутации, индицируемые алкирующими соединениями. К веществам, под действием которых основания удаляются из нуклеиновой кислоты, относятся алкирующие соединения — иприт и его аналоги, этиленимин и его аналоги - этилметансульфонат и этилэтансульфонат и др. Они непосредственно взаимодействуют с нуклеиновыми кислотами, пуринами и главным образом с гуанином, вызывая простые (транзиции) и сложные (трансверсии) замены; из ДНК удаляются пурины (в основном гуанин) и, в зависимости от того, какой нуклеотид встретится напротив бреши при репликации, либо возникает мутация типа замены, либо не возникает ее совсем.
Кроме простых замен (пурин на пурин), алкилирующие агенты способны индуцировать сложные замены — пурин на пиримидин.
Мутагенное действие гидроксиламина. Гидроксиламин индуцирует мутации по типу образования простых замен оснований в нуклеиновой кислоте, направление которых зависит от типа нуклеиновой кислоты, которую содержит вирус. У ДНК-содержащих вирусов этот мутаген реагирует исключительно с цитозином. При воздействии на РНК-содержащие вирусы он вступает в реакцию как с цитозином, так и с урацилом, что обусловливает замены цитозина на урацил и наоборот.
Мутагенное действие азотистой кислоты. Среди веществ, химически изменяющих основания в покоящейся молекуле нуклеиновой кислоты, наиболее хорошо изучены азотистая кислота и гидроксиламин. Механизм действия азотистой кислоты (HNO2) как мутагена на нуклеиновые кислоты вирусов заключается в дезаминировании органических оснований, т. е. отщеплении от их молекул аминогруппы (NH2). В результате действия азотистой кислоты аденин (А) превращается в гипоксантин (Гк), гуанин (Г) — в ксантин (К), а цитозин (Ц) — в урацил (У). Вследствие этой реакции у дезаминированных органических основании возникают новые свойства.
Мутагенное действие повышенной температуры. Влияние повышенной температуры (40—50 °С) обнаружил Фриз в опытах с фагом Т4 и Ю. 3. Гендон при обработке РНК вируса полиомиелита. Температура способствует удалению пуринов (преимущественно гуанина) из ДНК. При репликации такой ДНК напротив бреши, вызванной утратой пурина могут быть включены в реплицирующую нить любые нуклеотиды. Если включится новый тип основания, которого ранее в этом участке не было, может произойти мутация (транзиция или трансверсия).
Мутагенное действие ультрафиолетовых лучей. Действие ультрафиолетовых лучей (УФ) как мутагенов состоит в том, что они взаимодействуют с молекулами нуклеиновых кислот и поглощаются ими, особенно лучи с длиной волны 260—280 им. Попадая в молекулу нуклеиновой кислоты, они поглощаются входящими в ее состав органическими основаниями. Оказалось, что тимин (Т), урацил (У) и цитозин-(Ц) более чувствительны к ультрафиолетовым лучам, чем аденин (А) и гуанин (Г). В результате облучения структура указанных пиримидинов изменяется. При облучении УФ-лучами две соседние, молекулы тиминов соединяются друг с другом в пары, образуя так называемые димеры.
Репарации
Установлено, что в клетках организмов имеются своего рода корректоры, ими являются так называемые репарирующие ферменты, задача которых состоит в выправлении ошибок в генетической информации, исправлении отдельных повреждении в структуре нуклеиновых кислот. Репарирующие ферменты для исправления ошибок и повреждений в структуре нуклеиновых кислот используют очень тонкие приемы «восстановительной микрохирургии». Они распознают каким-то образом в молекулах нуклеиновых кислот аномальные кодоны и повреждённые участки и стараются их по возможности быстро исправить. Любую ошибку в генетической информации репарирующие ферменты стремятся исправить до начала репликации нуклеиновых кислот, так как в противном случае эта ошибка при матричном механизме копирования перейдет к дочерним молекулам нуклеиновых кислот, передастся потомству и станет наследственной.
Один из ферментов, участвующих и восстановлении первичной структуры ДНК (эндонуклеаза), «отрезает» поврежденный нуклеотид от соседнего нуклеотида слева, а другой фермент — справа. Вырезанный аномальный нуклеотид (или участок молекулы) отбрасывается в окружающую среду. Затем приступает к работе другой фермент (экзонуклеаза), который расширяет брешь, образовавшуюся в нити ДНК. Далее фермент ДНК-полимераза восстанавливает недостающие участки повреждений нити согласно закону комплементарности, т. е. в соответствии со второй нитью. На последнем этапе вновь синтезированные участки «сшиваются» в прочную единую цепь с помощью фермента лигазы, благодаря чему восстанавливается исходная молекула ДНК, не имеющая структурных изъянов.