Структурная организация генома вируса

У вирусов роль хромосом выполняет нить нуклеиновой кислоты (ДНК или РНК), у одних она цельная, у других (грипп, рео- ареновирус) – фрагментированная. Отдель­ные участки нуклеиновой кислоты, ответственные (детерминирующие) за синтез определенного белка, получили название генов. Простейшие из известных вирусов содержат от трех до пяти генов (например, ДНК-содержащий вирус полиомы; у пикорнавирусов 6—8 генов). Однако у более сложного вируса (например, крупного бактериофага Т4) более 30 генов контролируют синтез белков оболочки и не менее 15 — синтез нуклеотидных предшественников; для размножения этого фага тре­буется участие примерно сотни генов.

Ген не является неделимым. У него имеются более мелкие участки (мутоны, реконы), несущие определенные функции. Как известно, ген является носителем одновременно трех свойств:

1) контролирует тот или иной признак организма (функция),

2) обменивается в скрещиваниях (рекомбинация) и

3) изменяется (мутация).

Понятие цистрон соответствует понятию ген - единице функции, т. е. соответствует инфор­мации об одном белке.

Синтез ферментов у вирусов закодирован в генах. Любой фермент (белок) может синтезироваться только в том слу­чае, если в нуклеиновой кислоте имеется соответствующий ген, кодирующий синтез данного фермента. Последовательность работы цистронов определяется индукцией или репрессией.

Под геномом вируса понимают совокупность всех генов данного вируса. У од­них вирусов геном образован одной молекулой нуклеиновой кислоты (ДНК или РНК), у других — несколькими молекулами (вирусы гриппа, рео- и аренавирусы).

Фенотип — это совокупность всех внешних и внутренних признаков и функции данного вируса. Генотип же определяется только структурой наследственного материала — ДНК или РНК, т. е. последовательностью нуй-леотидов в их молекулах или кодом белкового синтеза. Фенотип вируса не является его постоянным свойством. Генотип же — это постоянное свойство вируса, и меняется он в результате мутаций, происходящих в-геноме. Мутационные измене­ния в геноме вируса влекут за собой и изменения его фенотипа.

Способы увеличения информационной емкости вирусного генома. В отличие от полицистронных иРНК прокариотов иРНК эукариотов являются моноцистронными, т.е. реализуется принцип «один ген – одна молекула иРНК – один белок». Однако у некоторых клеточных иРНК и часто у вирусных иРНК этот принцип нарушается, и иРНК может направлять синтез двух полипептидов.

У многих вирусов молекулярная масса синтезирующихся белков превышает теоретически рассчитанную. Этот феномен объясняется наличием у вирусов механизмов, позволяющих получить развернутую информацию при максимальной экономии генетического материала; подобные механизмы выработаны в процессе эволюции вирусов как генетических паразитов.

Способами увеличения информации являются:

1) двукратное считывание одной и той же иРНК, но с другого иницирующено кодона;

В составе иРНК обычно встречается несколько инициирующих кодонов. В составе иРНК обычно встречается несколько инициирующих кодонов. В соответствии с принятой в настоящее время гипотезой «сканирующей модели» малая рибосомальная субъединица связывается с иРНК около 5¢-конца и скользит вниз до встречи с инициирующим кодоном. Однако инициация в большинстве случаев происходит не с первого инициирующего кодона, а с последующего АУГ - кодонов. «Правильный» функционирующий АУГ- кодон узнается рибосомой благодаря окружающим его последовательностям («фланкирующим» нуклеотидам). В том случае, если первый инициирующий кодон находится в менее благоприятном окружении, чем последующие АУГ – кодоны, большинство малых рибосомальных субъединиц пройдут этот кодон и начнут инициацию трансляции с последующих АУГ – кодонов, однако некоторые субъединицы начнут инициацию с первого АУГ – кодона. В этом случае одна иРНК может направить синтез двух белков разной длины. Такие иРНК имеются у многих вирусов.

2) сдвиг рамки трансляции;

Трансляция может происходить без сдвига рамки и со сдвигом ее. Генетический код является триплетным, это означает, что три нуклеотида, составляющих триплет или кодон, кодируют одну аминокислоту. В том случае, если триплеты сохранены и генетический код не изменился, при трансляции с двух разных инициирующих кодонов будут синтезироваться полипептиды, представляющие собой укороченный участок первого полипептида (трансляция без сдвига рамки).

В том случае, если произошел сдвиг на один или два нуклеотида, меняется смысл всех кодонов (триплетов), стоящих за местом сдвига. В этом случае одна молекула иРНК может транслироваться с образованием двух уникальных белков, т.е. таких, у которых нет идентичных аминокислотных последовательностей.

Таким образом, общее число триплетов в составе молекулы нуклеиновой кислоты может быть меньше суммы числа триплетов, входящих в состав всех генов. Более точные представления о числе генов можно получить путем биохимического и генетического анализов.

4) сплайсинг;

5) сплайсинг со сдвигом рамки широко распространен у ряда вирусов. В результате сплайсинга и сдвига рамки иРНК генов транслируются с образованием двух белков

Одним из способов экономии генетического материала является нарезание полипептида - предшественника на участки разной длины, в результате чего образуются разные полипептиды с перекрывающимся аминокислотными последовательностями.

4)транскрипция с перекрывающихся областей ДНК и и др.

В результате перекрывания генов и сдвига рамки трансляции «размыкаются» границы генов, и понятие «ген» в известном смысле утрачивает первоначальное значение как дискретный фрагмент генома и приобретает скорее функциональное значение.

Наследственность у вирусов

Наследственность — это свойство организмов обеспечивать материальную и функциональную преемственность между поколениями, а также обусловливать спе­цифический характер индивидуального развития. Изменчивость — свойство, про­тивоположное наследственности. Изменчивость вирусов может быть обусловлена мутацией генов.

Мутации у вирусов

В основе наследственного изме­нения свойств вирусов могут лежать два процесса:

1) мутация, т. е. изменение последовательности нуклеотидов в определенном участке генома вируса, ведущее к фенотипически выраженному изменению свойства, и

2) рекомбинация, т. е. обмен генетическим материалом меж­ду двумя близкими, но отличающимися по наследственным свойствам вирусами.

Мутация — изменчивость, связанная с изменением самих генов. Она может иметь прерывистый, скачкообразный характер и приводит к стойким изменениям наследственных свойств вирусов.

Все мутации вирусов делятся на две группы:

- спонтанные и

- индуцированные;

По протяженности их делят на:

- точечные и

-аберрационные (изменения, затрагивающие значительный участок генома).

Точечные мутации обусловлены заменой одного нуклеотида (для РНК-содержащих виру­сов) или одной пары комплементарных нуклеотидов (для ДНК-содержащих вирусов). Такие мутации могут иногда ревертировать с восстановлением исходной структуры генома.

Однако мутационные изменения способны захватывать и более крупные участки молекул нуклеиновых кислот, т. е. несколько нуклео­тидов. В этом случае тоже могут происходить выпадения, вставки и перемещения (транслокации) целых участков и даже повороты участ­ков на 180° (так называемые инверсии). Это будут уже более крупные перестройки в структуре нуклеиновых кислот, а следовательно, и нарушения генетической информации.

Следует отметить, что не всегда точечные мутации реализуются. Имеется ряд причин, в силу которых такие мутации могут не проявляться. Одна из них — вырожденность генетического кода. Как уже указывалось, код белкового синтеза вырожден, т, е. некоторые аминокислоты могут кодироваться несколь­кими триплетами (кодонами). Например, аминокислота лейцин может кодироваться шестью триплетами. Вот почему если в молекуле РНК вследствие каких-то воздействий произошла замена триплета ЦУУ на ЦУЦ, ЦУА на ЦУГ, то в молекуле синтезируемого белка все равно включится аминокислота лейцин. Поэтому ни структура белка, ни его биологические свойства не нарушатся.

Другое дело, когда какая-то аминокислота кодируется всего одни триплетом, например, синтез триптофана кодируется только одним триплетом УГГ и замены, т. е. синонима, не имеет. В этом случае в белок включается какая-нибудь иная аминокислота, что может привести к появлению мутантного признака.

Как спонтанные, так и индуцированные мутации делят также на прямые и обратные (реверсии). Прямые мутации меняют фенотип, а обратные его восстанавливают.

Спонтанные мутации

Спонтанные мутации у виру­сов возникают в популяции без искусственного вмешательства со стороны экспериментатора. Не может быть абсолютно однородных популяций. Однородность относительна, поэтому в вирусной популя­ции в процессе ее развития спонтанные мутанты возникают с опреде­ленной вероятностью.

Частота мутаций одного и того же признака может быть различной в зависимости от штамма. Так, частота мутаций по признаку rсt 40° у штамма W-Fox вируса полиомиелита составляла 2,4´10-5, тогда как у штамма.Ch-AT она была на порядок ниже — 2,0´10-6.

Каковы причины и механизмы возникновения спонтанных мутаций? По мнению Уотсона и Крика, спонтанные мутации могут возни­кать вследствие таутомерного (таутомерия – один из видов изомерии, при которой изомеры легко переходят друг в друга) превращения оснований, входящих в состав ДНК. Так, например, таутомерный сдвиг в положении атома водорода у аденина приводит к тому, что аденин при репликации спари­вается не с тимином, а с гуанином. Такая ошибка при спаривании осно­ваний приводит при последующих репликациях к замене пары AT и ГЦ.

Спонтанные мутации, возникшие в одном и том же гене, распре­деляются по его длине неравномерно. Одни участки гена мутируют часто, их называют «горячими» точками, другие же — редко. Кроме того, спонтанные мутации при репликации могут быть обусловлены ошибками в работе ферментов —ДНК- или РНК-полимераз.

Изучение мутационной изменчивости того или иного вируса состоит в определении физико-химических и биологических свойств мутанта. (вирулентностью, реактогенностью, иммуногенностью, способность репродукции в той или иной системе, термо-резистентность, гемагглютинирующие, гемолизирующие и другие свойства).

Мутации у вирусов могут возникать и в результате адаптации их к необычным биологическим системам in vitro (культуры клеток) и in vivo (животные, куриные эмбрионы).

Мутации при пассажах на животных. Стабильные высокоиммуногенные штаммы вирусов получают методом длительной адаптации к лабораторным, естественно-восприимчивым или невосприимчивым животным. Так, был по­лучен вакцинный штамм (virus fixe) бешенства.

При адаптации вирусов к естественно-невосприимчивым видам животных или к гетерогенным тканям экспериментально-восприимчивых животных решающее зна­чение имеют вид и возраст животного, способ введения вируса и его свойства, а также свойства штамма.

Для успеха адаптации вирусов к организму лабораторных животных сущест­венное значение имеет ослабление резистентное их путем воздействия кортизоном, температурой, облучением g-лучами и т. п.

Мутации при пассажах в культурах клеток. В культурах клеток и тканей успешно выращиваются и аттенуируются многие вирусы.

Причины возникновения мутаций в процессе адаптации. Изменение свойств вируса в процессе пассажей происходит ступенчато. В первых пассажах обнаруживают главным образом вирионы, изменившие ка­кой-либо один генетический признак; с увеличением пассажей в попу­ляции выявляют вирионы, изменившие два и более генетических признака; по мере пассирования количество таких частиц постоянно возрастает, и в дальнейшем у подавляющего большинства вирусных частиц наблюдают изменение многих генетических признаков.

В основе механизма наследственной изменчивости вирусной популяции при пассажах лежат два процесса: мутация и селекция, причем и в том, и в другом процессе важную роль играет внешняя среда, являющаяся одновременно индуктором мутации и се­лективным фактором.

Если гетерогенную вирусную популяцию, имеющую в своем составе измененные и исходные вирусные частицы, культивировать в обычных условиях, то это приводит к ее реверсии.

Наконец, накопилось большое число фактов об изменчивости вируса, вызываемой хозяином (host-controlled variation). Эти измене­ния заключаются в том, что клетка влияет на характер синтезирующих в ней компонентов вируса. Такие модификации не затрагивают нуклеотидную последовательность вирусного генома.

Таким образом, клетка хозяина может существенно влиять на фенотип вируса или блокировать (частично или полностью) его репро­дукцию.

Индуцированные мутации

Возникают при действии на вирус (на его вегетатив­ную или покоящуюся форму) различными химическими и физическими мутагенами, а также в процессе адаптации его к необычным биологическим системам (при адап­тационной изменчивости).

Применение искусственных мутагенов имеет два преимущества. Во-первых, они вызывают мутации в десятки и сотни раз эффективнее, чем природные факторы, и, во-вторых, действие некоторых искусственных мутагенов имеет известную напра­вленность, что позволяет заранее предвидеть, на какие элементы структуры нуклеи­новых кислот и каким образом действует тот или иной мутаген и какие изменения в них вызовет.

Химические мутагены. Предложено разделить мутагены на две основные группы:

1) мутагены, реагирующие с нуклеиновой кислотой только во время ее репликации (аналоги пуриновых и пиримидиновых оснований);

2) мутагены вступающие в реакцию с покоящейся молекулой нуклеиновой кислоты, но требующие для формирования мутаций последующих ее репликаций (азотистая кислота, гидроксиламин, алкилирующие соединения).

В последние годы синтезирован и изучен целый ряд химических соединений — супермутагенов (нитрозопроизводных мочевины — нитрозогуанидин и его производ­ные)

Молекулярные механизмы мутагенного действия химических соединений. В основе молекулярных изменений вирусной нуклеиновой кислоты, приводящих к мутации, лежат два основных процесса за­мена основания и выпадение или вставка основания. Различает два типа за­мены оснований, входящих в состав вирусной нуклеиновой кислоты: простую (транзиция) и сложную (трансверсия). При простой замене на место одного пуринового основания встает другое (например, вместо аденина — гуанин) или вместо одного пиримидинового основания — другое пиримидиновое основание (вместо цитозина — урацил).

При сложной замене — трансверсии вместо пуринового основания появляется пиримидиновое или пиримидиновое основание заменяется пуриновым.

Другой процесс — выпадение (делеция) или вставка оснований— ведет к более глубоким изменениям генетического кода, чем простая - замена оснований. Мутационные повреждения в одном участке генома нередко приводят к изме­нению нескольких генетических признаков, имеющих различное фенотипическое проявление (плейотропия).

Мутагенное действие аналогов азотистых оснований (5-бромурацила, 5-фторурацила, 5-йодурацила, 2-аминопурина, 2,6-диаминопурина). Аналоги основании индуцируют мутации только при воздействии на реплицирующиеся молекулы ДНК и РНК. Из этой группы соединений наиболее хорошо изучены 5-бромурацил и 2-аминопурин. Tимин (Т) является урацилом (У), в котором атом водорода (Н) в одной из СН - групп заменен метильной группой (СН3). Другими словами, тимин — это метилурацил. Однако в урациле этот атом водорода можно заменить и другим атомом, например брома (Вr). В результате такой замены получается новое соединение — бромурацил (БУ), который является аналогом тимина, так как структура основного ядра (кольца) у обоих соединений совершенно одинакова, а различие заключается лишь в одной группе (Вr вместо СН3).

Мутации, индицируемые алкирующими соединениями. К веществам, под дей­ствием которых основания удаляются из нуклеиновой кислоты, относятся алкирующие соединения — иприт и его аналоги, этиленимин и его аналоги - этилметансульфонат и этилэтансульфонат и др. Они непосредственно взаимодействуют с нуклеи­новыми кислотами, пуринами и главным образом с гуанином, вызывая простые (транзиции) и сложные (трансверсии) замены; из ДНК удаляются пурины (в основ­ном гуанин) и, в зависимости от того, какой нуклеотид встретится напротив бреши при репликации, либо возникает мутация типа замены, либо не возникает ее совсем.

Кроме простых замен (пурин на пурин), алкилирующие агенты способны инду­цировать сложные замены — пурин на пиримидин.

Мутагенное действие гидроксиламина. Гидроксиламин индуцирует мутации по типу образования простых замен оснований в нуклеиновой кислоте, направление которых зависит от типа нуклеиновой кислоты, которую содержит вирус. У ДНК-содержащих вирусов этот мутаген реагирует исключительно с цитозином. При воз­действии на РНК-содержащие вирусы он вступает в реакцию как с цитозином, так и с урацилом, что обусловливает замены цитозина на урацил и наоборот.

Мутагенное действие азотистой кислоты. Среди веществ, химически изменяю­щих основания в покоящейся молекуле нуклеиновой кислоты, наиболее хорошо изучены азотистая кислота и гидроксиламин. Механизм действия азотистой кислоты (HNO2) как мутагена на нуклеиновые кислоты вирусов заключается в дезаминировании органических оснований, т. е. отщеплении от их молекул аминогруппы (NH2). В результате действия азотистой кислоты аденин (А) превращается в гипоксантин (Гк), гуанин (Г) — в ксантин (К), а цитозин (Ц) — в урацил (У). Вследствие этой реакции у дезаминированных органических основа­нии возникают новые свойства.

Мутагенное действие повышенной температуры. Влияние повышенной температуры (40—50 °С) обнаружил Фриз в опытах с фагом Т4 и Ю. 3. Гендон при обработке РНК вируса полиомиелита. Температура способ­ствует удалению пуринов (преимущественно гуанина) из ДНК. При репликации такой ДНК напротив бреши, вызванной утратой пурина могут быть включены в реплицирующую нить любые нуклеотиды. Если включится новый тип основания, которого ранее в этом участке не было, может произойти мутация (транзиция или трансверсия).

Мутагенное действие ультрафиолетовых лучей. Действие ультрафиолетовых лучей (УФ) как мутагенов состоит в том, что они взаи­модействуют с молекулами нуклеиновых кислот и поглощаются ими, особенно лучи с длиной волны 260—280 им. Попадая в молекулу нуклеиновой кислоты, они погло­щаются входящими в ее состав органическими основаниями. Оказалось, что тимин (Т), урацил (У) и цитозин-(Ц) более чувствительны к ультрафиолетовым лучам, чем аденин (А) и гуанин (Г). В результате облучения структура указанных пиримидинов изменяется. При облучении УФ-лучами две соседние, молекулы тиминов соединяются друг с другом в пары, образуя так называемые димеры.

Репарации

Установлено, что в клетках организмов имеются своего рода корректоры, ими являются так называемые репарирующие ферменты, задача кото­рых состоит в выправлении ошибок в генетической информации, исправлении от­дельных повреждении в структуре нуклеиновых кислот. Репарирующие ферменты для исправления ошибок и повреждений в структуре нуклеиновых кислот исполь­зуют очень тонкие приемы «восстановительной микрохирургии». Они распознают каким-то образом в молекулах нуклеиновых кислот аномальные кодоны и повре­ждённые участки и стараются их по возможности быстро исправить. Любую ошибку в генетической информации репарирующие ферменты стремятся исправить до начала репликации нуклеиновых кислот, так как в противном случае эта ошибка при мат­ричном механизме копирования перейдет к дочерним молекулам нуклеиновых ки­слот, передастся потомству и станет наследственной.

Один из ферментов, участвующих и восстановлении первичной структуры ДНК (эндонуклеаза), «отрезает» поврежденный нуклеотид от соседнего нуклеотида слева, а другой фермент — справа. Вырезанный аномальный нуклеотид (или участок мо­лекулы) отбрасывается в окружающую среду. Затем приступает к работе другой фермент (экзонуклеаза), который расширяет брешь, образовавшуюся в нити ДНК. Далее фермент ДНК-полимераза восстанавливает недостающие участки поврежде­ний нити согласно закону комплементарности, т. е. в соответствии со второй нитью. На последнем этапе вновь синтезированные участки «сшиваются» в прочную единую цепь с помощью фермента лигазы, благодаря чему восстанавливается исходная мо­лекула ДНК, не имеющая структурных изъянов.

Наши рекомендации