Мозг и душа. Как нервная деятельность формирует
Мозг и душа. Как нервная деятельность формирует
Наш внутренний мир
«Corpus (АСТ)»
Фрит К.
Мозг и душа. Как нервная деятельность формирует наш внутренний мир / К. Фрит — «Corpus (АСТ)», 2007
Знаменитый британский нейрофизиолог Крис Фрит хорошо известен умением говорить просто об очень сложных проблемах психологии – таких как психическая деятельность, социальное поведение, аутизм и шизофрения. Именно в этой сфере, наряду с изучением того, как мы воспринимаем окружающий мир, действуем, делаем выбор, помним и чувствуем, сегодня и происходит научная революция, связанная с внедрением методов нейровизуализации. В книге “Мозг и душа” Крис Фрит рассказывает обо всем этом самым доступным и занимательным образом.
© Фрит К., 2007 © Corpus (АСТ), 2007
Содержание
Список сокращений 6
Предисловие 7
Благодарности 8
Пролог: настоящие ученые не изучают сознание 9
Почему психологи боятся вечеринок 9
Точные и неточные науки 12
Точные науки объективны, неточные – субъективны 13
Поможет ли большая наука неточной науке? 15
Измерение активности мозга 18
Как из материальных явлений могут возникать психические? 25
Я умею читать ваши мысли 26
Как мозг создает наш внутренний мир 27
Часть первая 28
1. О чем нам может рассказать поврежденный мозг 28
Восприятие материального мира 28
Психика и мозг 29
Когда мозг не знает 30
Когда мозг знает, но не хочет сказать 34
Когда мозг говорит неправду 36
Как мозговая активность создает ложные знания 38
Как заставить наш мозг нас обманывать 41
Проверка опыта на соответствие действительности 44
Откуда мы знаем, что реально, а что нет? 44
2. Что говорит нам о мире здоровый мозг 47
Иллюзия полноты восприятия 47
Наш скрытный мозг 52
Наш неадекватный мозг 55
Наш креативный мозг 58
3. Что наш мозг говорит нам о нашем теле 67
Привилегированный доступ? 67
Где граница? 67
Мы не ведаем, что творим 71
Конец ознакомительного фрагмента 73
Крис Фрит
Мозг и душа. Как нервная деятельность формирует наш внутренний мир
© Chris D. Frith, 2007
All Rights Reserved. Authorised translation from the English language edition published by Blackwell Publishing Limited. Responsibility for the accuracy of the translation rests solely with The Dynasty Foundation and is not the responsibility of John Blackwell Publishing Limited. No part of this book may be reproduced in any form without the written permission of the original copyright holder, Blackwell Publishing Limited.
© Фонд Дмитрия Зимина “Династия”, издание на русском языке, 2010
© П. Петров, перевод на русский язык, 2010
© ООО “Издательство Астрель”, 2010 Издательство CORPUS®
Все права защищены. Никакая часть электронной версии этой книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для частного и публичного использования без письменного разрешения владельца авторских прав.
© Электронная версия книги подготовлена компанией ЛитРес (www.litres.ru)
* * *
Посвящается Уте
Список сокращений
АКТ – аксиальная компьютерная томография
МРТ – магнитно-резонансная томография
ПЭТ – позитронно-эмиссионная томография
ФМРТ – функциональная магнитно-резонансная томография
ЭЭГ – электроэнцефалограмма
BOLD (blood oxygenation level dependent) – зависящий от уровня кислорода в крови
Предисловие
У меня в голове есть изумительное трудосберегающее устройство. Мой мозг – лучше, чем посудомоечная машина или калькулятор, – освобождает меня от скучной, однообразной работы по узнаванию окружающих вещей и даже избавляет меня от необходимости думать о том, как контролировать движения моего тела. Это дает возможность сосредоточиться на том, что действительно для меня важно: на дружбе и обмене идеями. Но, разумеется, мой мозг не только избавляет меня от утомительной повседневной работы. Он-то и формирует того меня, жизнь которого проходит в обществе других людей. Кроме того, именно мой мозг позволяет мне делиться с моими друзьями плодами своего внутреннего мира. Так мозг делает нас способными на нечто большее, чем то, на что способен каждый из нас поодиночке. В этой книге рассказано о том, как мозг творит эти чудеса.
Благодарности
Моя работа по изучению психики и мозга стала возможна благодаря финансированию Медицинского исследовательского совета и Треста Уэллкома. Медицинский исследовательский совет дал мне возможность заниматься нейрофизиологией шизофрении за счет финансовой поддержки психиатрического подразделения Тима Кроу при Клиническом исследовательском центре лондонской больницы Нортуик-Парка в Хэрроу (Миддлсекс). В то время мы могли судить о взаимосвязях психики и мозга лишь на основании косвенных данных, но всё изменилось в восьмидесятые годы, когда были изобретены томографы для сканирования работающего мозга. Трест Уэллкома дал возможность Ричарду Фраковяку создать Лабораторию функциональной томографии и оказывал финансовую поддержку моей работе, проводимой в этой лаборатории, по исследованию нейрофизиологических основ сознания и социальных взаимодействий. Изучение психики и мозга находится на стыке многих традиционных дисциплин, от анатомии и вычислительной нейробиологии до философии и антропологии. Мне очень повезло, что я всегда работал в междисциплинарных – и многонациональных – исследовательских группах.
Мне очень много дало общение с коллегами и друзьями из Университетского колледжа Лондона, в особенности с Рэем Доланом, Диком Пассингемом, Дэниэлом Уолпертом, Тимом Шэллисом, Джоном Драйвером, Полом Бёрджессом и Патриком Хаггардом. На ранних этапах работы над этой книгой мне помогли неоднократные плодотворные обсуждения, касавшиеся мозга и психики, с моими друзьями в Орхусе, Якобом Ховю и Андреасом Рёпсторфом, и в Зальцбурге, с Йозефом Пернером и Хайнцем Виммером. Мартин Фрит и Джон Ло всегда, сколько я себя помню, спорили со мной обо всем, о чем идет речь в этой книге. Ева Джонстоун и Шон Спенс щедро делились со мной своими профессиональными знаниями о психиатрических явлениях и их значении для науки о мозге.
Наверное, важнейшим стимулом для написания этой книги послужили мои еженедельные разговоры в прошлой и нынешней компании, собиравшейся за завтраком. СараДжейн Блейкмор, Давина Бристоу Тьерри Шаминад, Дженни Кулл, Эндрю Даггинс, Хлоя Фаррер, Хелен Гэллахер, Тони Джек, Джеймс Килнер, Хагуань Лау, Эмильяно Макалузо, Элинор Магуайр, Пьер Маке, Джен Марчант, Дин Моббс, Матиас Пессильоне, Кьяра Портас, Герайнт Рис, Йоханнес Шульц, Сухи Шергилл и Таня Зингер помогли оформиться этой книге. Я глубоко признателен им всем.
Карлу Фристону и Ричарду Грегори, прочитавшим отдельные разделы этой книги, я благодарен за неоценимую помощь и ценные советы. Я также благодарен Полу Флетчеру за то, что на ранних этапах работы над книгой он поддержал идею ввести в нее профессора английского языка и других персонажей, которые спорят с рассказчиком.
Филип Карпентер самоотверженно способствовал улучшению этой книги своими критическими замечаниями.
Я особенно признателен тем, кто прочитал все главы и подробно прокомментировал мою рукопись. Шон Гэллахер и два анонимных читателя высказали немало ценных предложений, как улучшить текст этой книги. Розалинда Ридли заставила меня тщательнее обдумывать свои утверждения и быть аккуратнее с терминологией. Алекс Фрит помог мне избавиться от профессионального жаргона и от недостатков последовательности изложения.
Ута Фрит активно участвовала в этом проекте на всех его этапах. Если бы она не подавала мне пример и не направляла меня, эта книга никогда бы не увидела свет.
Точные и неточные науки
В системе научной иерархии “точные” науки занимают высокое положение, а “неточные” – низкое. Предметы, изучаемые точными науками, подобны ограненному алмазу, у которого есть строго определенная форма, а все параметры могут быть измерены с высокой точностью. “Неточные” науки изучают предметы, похожие на шарик мороженого, форма которого далеко не столь определенна, а параметры могут меняться от измерения к измерению. Точные науки, такие как физика и химия, исследуют осязаемые предметы, поддающиеся очень точным измерениям. Например, скорость света (в вакууме) составляет ровно 299 792 458 метров в секунду. Атом фосфора весит в 31 раз больше, чем атом водорода. Это очень важные числа. Исходя из атомного веса различных элементов можно составить периодическую таблицу, некогда позволившую сделать первые выводы о строении материи на субатомном уровне.
Когда-то биология была не такой точной наукой, как физика и химия. Это положение дел кардинально изменилось после того, как ученые открыли, что гены состоят из строго определенных последовательностей нуклеотидов в молекулах ДНК. Например, ген овечьего приона[4] состоит из 960 нуклеотидов и начинается так: ЦТГЦАГАЦТТТААГТГАТТСТТАЦГ-
ТГГЦ…
Я должен признать, что перед лицом такой точности и строгости психология выглядит очень неточной наукой. Самое известное число в психологии – 7, число предметов, которые можно одновременно удерживать в рабочей памяти.[5] Но даже эта цифра нуждается в уточнении. Статья Джорджа Миллера об этом открытии, опубликованная в 1956 году, называлась “Магическое число семь – плюс-минус два”. Стало быть, лучший результат измерений, полученный психологами, может меняться в ту или иную сторону почти на 30 %. Число предметов, которые мы можем удержать в рабочей памяти, может быть разным в зависимости от времени и от человека. В состоянии усталости или тревоги я запомню меньше чисел. Я говорю по-английски и поэтому могу запомнить больше чисел, чем те, кто говорит поваллийски.[6] “А чего вы ожидали? – говорит профессор английского языка. – Человеческую душу нельзя расправить, как бабочку в витрине. Каждый из нас неповторим”.
Это замечание не вполне уместно. Разумеется, каждый из нас неповторим. Но у всех нас есть и общие свойства психики. Именно эти фундаментальные свойства и ищут психологи. У химиков была ровно та же проблема с веществами, которые они исследовали до открытия химических элементов в XVIII веке. Каждое вещество неповторимо. У психологии, по сравнению с “точными” науками, было мало времени на то, чтобы найти, что измерять, и придумать, как измерять. Психология как научная дисциплина существует лишь немногим более 100 лет. Я уверен, что со временем психологи найдут, что измерять, и разработают приспособления, которые помогут нам сделать эти измерения очень точными.
Измерение активности мозга
Решению проблемы помогла не структурная томография. Прогресс в этой области обеспечили функциональные томографы, разработанные через несколько лет после структурных. Эти аппараты позволяют регистрировать потребление энергии тканями мозга. Бодрствуем мы или спим, 15 миллиардов нервных клеток (нейронов) нашего мозга постоянно посылают сигналы друг другу. При этом тратится немало энергии. Наш мозг потребляет около 20 % энергии всего тела, несмотря на то что его масса составляет лишь около 2 % от массы тела. Весь мозг пронизан сетью кровеносных сосудов, по которым и переносится энергия в форме кислорода, содержащегося в крови. Распределение энергии в мозгу очень точно отрегулировано, так чтобы в те участки мозга, которые в настоящий момент наиболее активны, ее поступало больше. Когда мы пользуемся слухом, самыми активными участками нашего мозга оказываются две боковые области, в которых находятся нейроны, получающие сигналы непосредственно от ушей (см. рис. ЦВ2 на цветной вставке). Когда нейроны в этих областях активно работают, туда поступает больше крови. Эта связь между активностью мозга и локальными изменениями кровотока была известна физиологам уже больше 100 лет, но до изобретения функциональных томографов не было возможности регистрировать подобные изменения.[15] Функциональные томографы для сканирования мозга (разработанные на основе методов позитронно-эмиссионной томографии (ПЭТ), и функциональной магнитно-резонансной томографии ФМРТ) позволяют регистрировать подобные изменения кровоснабжения, указывающие на то, какие области мозга в настоящий момент наиболее активны.
Самый большой недостаток таких томографов состоит в неудобствах, которые испытывает человек при сканировании его мозга. Ему приходится лежать на спине около часа, по возможности неподвижно. Единственное, что можно делать, находясь внутри томографа, это думать, но в случае с ФМРТ даже думать, оказывается, не так-то просто, потому что томограф производит такой шум, как будто у вас под самым ухом работает отбойный молоток. В одном из самых первых, новаторских исследований, проводившихся с помощью ранней модели позитронно-эмиссионного томографа, испытуемых просили представить себе, что они выходят из своего дома и идут по улицам, сворачивая на каждом перекрестке налево17. Оказалось, что подобных чисто воображаемых действий вполне достаточно, чтобы вызвать активацию работы многих участков мозга.
Рис. п.4.Кора головного мозга и ее клетки
Срез коры головного мозга под микроскопом и слои нервной ткани, видимые на срезе.
Вот здесь-то большая наука и приходит на помощь “неточной” психологии. Испытуемый, лежащий в томографе, представляет себе, что он[16] идет по улице. В действительности он не движется и ничего не видит. Эти события происходят лишь у него в голове. Я никак не могу проникнуть в его сознание, чтобы проверить, действительно ли он делает то, о чем его попросили. Но с помощью томографа я могу проникнуть в его мозг. И я могу увидеть, что, когда он представляет себе, что идет по улице и поворачивает налево, в его мозгу наблюдается активность определенного характера.
Разумеется, большинство томографических исследований работы мозга более объективны. Например, перед глазами испытуемого зажигают красный свет, и он нажимает кнопки, при этом действительно двигая пальцами. Но я (как и некоторые мои коллеги) всегда больше интересовался стороной работы мозга, связанной с чисто психическими явлениями. Мы обнаружили, что, когда испытуемый представляет себе, что нажимает кнопку, в его мозгу активируются те же самые области, которые активируются, когда он действительно нажимает ее. Если бы не томограф, у нас не было бы абсолютно никаких объективных признаков, по которым можно было бы сказать, что испытуемый представляет себе, что нажимает кнопку. Мы можем убедиться в том, что при этом не происходит ни малейших движений пальцев или мышечных сокращений. Поэтому мы полагаем, что он следует нашему указанию представлять себе, что он нажимает кнопку, каждый раз, когда слышит определенный сигнал. Измеряя мозговую активность, мы получаем объективное подтверждение этого психического явления. Пользуясь функциональным томографом, я, скорее всего, мог бы сказать, представляете ли вы, что двигаете ногой или пальцем руки. Но пока еще я, скорее всего, не смогу сказать, о каком именно пальце вы думали.
Рис. п.5. Части мозга и области коры
Вверху показаны основные части головного мозга. Внизу показаны области (“поля”) коры головного мозга по Бродману (мозжечок и мозговой ствол удалены). Поля Бродмана выделены на основании внешнего вида участков коры под микроскопом. Номера, присвоенные этим полям, условны.
Возможно, мне стоило заняться не этим, а изучением зрения. Нэнси Кэнуишер и ее группа в Массачусетском технологическом институте показали, что когда мы смотрим на лицо (чье угодно), у нас в мозгу всегда активируется определенный участок, а когда мы смотрим на дом (какой угодно), то активируется другой участок мозга, расположенный поблизости[17]. Если попросить испытуемого представить себе уведенное несколько секунд назад лицо или здание, в его мозгу активируются соответствующие участки. Когда я лежу внутри сканера в лаборатории доктора Кэнуишер, она может сказать, о чем я думаю (если я думаю только о лицах или только о домах).
Рис. п.6.Испытуемый, лежащий внутри томографа для сканирования мозга
Это решает проблему психологии как “неточной” науки. Теперь нам незачем беспокоиться о неточности, субъективности наших сведений о психических явлениях. Вместо этого мы можем проводить точные, объективные измерения активности мозга. Наверное, теперь мне уже не стыдно будет признаться, что я психолог.
Но вернемся на нашу вечеринку. Я не могу удержаться и рассказываю всем про большую науку томографии мозга. Заведующей отделением физики нравится этот новый этап в развитии психологии. В конце концов, именно физика сделала его возможным. Но профессор английского языка не готова согласиться, что изучение мозговой активности может чтото рассказать нам о человеческой психике.
Рис. п.7.Результаты сканирования мозга во время реальных и воображаемых движений
На схемах вверху показано, как проходят срезы мозга (в верхней части и посередине), на которых видна мозговая активность. На верхних срезах показана активность, наблюдаемая, когда испытуемый двигает правой рукой, а на нижних – активность, наблюдаемая, когда испытуемый только представляет себе, что двигает правой рукой.
Рис. п.8.Лица и дома, видимые и воображаемые
Мозг (вид снизу), и его области, связанные с восприятием лиц и мест. Активность одной и той же области увеличивается и когда мы видим какое-либо лицо, и когда мы только представляем себе какое-либо лицо. То же самое относится к области, связанной с восприятием мест.
“Когда-то вы считали, что у нас в голове фотоаппарат. Теперь вы считаете, что там компьютер. Даже если у вас получится заглянуть внутрь этого компьютера, вы останетесь всё с той же избитой моделью. Конечно, компьютеры умнее фотоаппаратов. Может быть, они и способны узнавать лица или механическими руками собирать яйца на птицеферме[18]. Но они никогда не смогут рождать новые идеи и передавать их другим компьютерам. Им никогда не создать компьютерной культуры. Такие вещи не по силам машинному разуму”.
Я отхожу, чтобы наполнить свой бокал. Я не ввязываюсь в спор. Я не философ. Я не надеюсь убедить других в своей правоте силой аргументов. Я признаю лишь те аргументы, что основаны на практическом опыте. И я берусь показать, как сделать невозможное возможным.
Я умею читать ваши мысли
И вот наконец на этой вечеринке происходит встреча, которой я больше всего боялся. На этот раз ко мне обращается самоуверенный молодой человек без галстука, который занимается, вероятно, молекулярной генетикой.
“Так вы психолог? Значит, вы можете читать мои мысли?”
Он же, наверное, умный человек. Как может он говорить такие глупости? Он просто надо мной издевается.
Лишь совсем недавно мне удалось понять, что это я по собственной глупости не понимал его. Конечно, я могу читать чужие мысли. И это доступно не только психологам. Все мы постоянно читаем мысли друг у друга. Без этого мы не могли бы обмениваться идеями, не смогли бы создать культуру! Но каким образом наш мозг позволяет нам проникать во внутренние миры, скрытые в головах других людей?
Я могу смотреть в глубины вселенной в телескоп и наблюдать активность внутри вашего мозга с помощью томографа, но я не могу проникнуть в ваше сознание. Мы все считаем, что наш внутренний мир – это совсем не то, что реальный материальный мир, окружающий нас.
И все же в повседневной жизни мы интересуемся мыслями других людей не меньше, чем объектами материального мира. Мы взаимодействуем с другими людьми, обмениваясь с ними мыслями, намного больше, чем физически взаимодействуем с их телами. Читая эту книгу, вы узнаёте мои мысли. А я, в свою очередь, пишу ее в надежде, что она позволит мне изменить образ ваших мыслей.
Часть первая
Психика и мозг
Прежде чем мы начнем разбираться в том, как повреждения мозга могут сказываться на нашем восприятии окружающего мира, нужно немного подробнее рассмотреть связь между нашей психикой и мозгом. Эта связь должна быть тесной. Как мы узнали из пролога, всякий раз, когда мы представляем себе какое-нибудь лицо, у нас в мозгу активируется специальная область, связанная с восприятием лиц. В данном случае мы, зная о чисто психическом опыте, можем предугадать, какая область мозга будет при этом активироваться. Как мы вскоре убедимся, мозговые травмы могут оказывать глубокое воздействие на психику. Более того, зная, где именно был травмирован мозг, мы можем предугадать, как в результате этого изменилась психика пациента. Но эта связь между мозгом и психикой несовершенна. Это не взаимно однозначная связь. Некоторые изменения активности мозга могут никак не сказаться на психике.
С другой стороны, я глубоко убежден, что любые изменения психики связаны с изменениями активности мозга25. Я убежден в этом потому, что считаю, что всё, что происходит
Около трети населения Земли страдает близорукостью. Но близорукость встречается еще чаще у таких людей, как вы, которые много читают и обладают высоким уровнем интеллекта. – Примеч. авт.
Изобретение способа измерять количество информации сыграло огромную роль в создании компьютеров и в изучении работы мозга (см. главу 5). – Примеч. авт. 24
Прежде чем достигнуть светочувствительных клеток сетчатки, свет должен пройти сквозь слой нервной ткани, пронизанной кровеносными сосудами. Чтобы видеть окружающий мир, нам приходится смотреть сквозь кровеносные сосуды, но мы этого не замечаем. Хотя, может быть, именно поэтому, если сильно напиться, можно, как утверждают, увидеть “розовых слоников”? – Примеч. авт. 25
Я не дуалист. – Примеч. авт. (Дуализм – философское учение, согласно которому в мире существует два несводимых друг к другу начала – материальное и духовное. – Примеч. перев.)
в моем внутреннем мире (психическая активность), вызывается мозговой активностью или, по крайней мере, зависит от нее[20].
Итак, если я прав в своем убеждении, последовательность событий должна выглядеть примерно так. Свет попадает на светочувствительные клетки (фоторецепторы) нашего глаза, и они посылают сигналы в мозг. Механизм этого явления уже неплохо известен. Затем возникающая в мозгу активность каким-то образом создает в нашем сознании ощущение цвета и формы. Механизм этого явления пока совершенно неизвестен. Но каким бы он ни был, мы можем сделать вывод, что в нашем сознании не может быть знаний об окружающем мире, никак не представленных в мозгу[21]. Всё, что мы знаем о мире, мы знаем благодаря мозгу. Поэтому, вероятно, нам незачем задаваться вопросом: “каким образом мы или наше сознание познаем окружающий мир? Вместо этого нужно задаться вопросом: каким образом наш мозг познаёт окружающий мир?”[22] Задаваясь вопросом о мозге, а не о сознании, мы можем на время отложить решение вопроса о том, как знания об окружающем мире попадают в наше сознание. К сожалению, этот трюк не работает. Чтобы узнать, что известно вашему мозгу об окружающем мире, я в первую очередь задал бы вам вопрос: “Что вы видите?” Я обращаюсь к вашему сознанию, чтобы узнать, что отображается в вашем мозгу. Как мы с вами убедимся, этот метод далеко не всегда надежен.
Когда мозг не знает
Из всех чувствительных систем мозга мы больше всего знаем о зрительной системе29. Видимая картина мира вначале отображается в нейронах, расположенных в глубине сетчатки. Получающееся при этом изображение перевернуто и зеркально отражено, совсем как картинка, возникающая внутри фотоаппарата: нейроны, расположенные на сетчатке вверху слева, отображают нижнюю правую часть поля зрения. Сетчатка посылает сигналы в первичную зрительную кору (V1[23]) в затылочной части мозга через таламус (зрительный бугор) – своеобразную ретрансляционную станцию, расположенную в глубине мозга. Отростки нейронов, передающие эти сигналы, частично перекрещиваются, так что левая сторона каждого глаза отображается в правом полушарии, а правая – в левом. “Фотографическое” изображение в первичной зрительной коре сохраняется[24], так что нейроны, расположенные в верхней части зрительной коры левого полушария? отображают нижнюю правую часть поля зрения.
Последствия повреждений первичной зрительной коры зависят от того, где именно произошла травма. Если поврежден верхний левый участок зрительной коры, то пациент, оказывается, неспособен видеть объекты, расположенные в нижней правой части поля зрения. В этой части поля зрения такие пациенты слепы.
Некоторые люди, страдающие от мигрени, время от времени перестают видеть какуюлибо часть поля зрения, оттого что у них на какое-то время сокращается приток крови к зрительной зоне коры. Обычно этот симптом начинается с того, что в поле зрения возникает небольшой “слепой” участок, который постепенно разрастается. Этот участок часто бывает окружен мерцающей зигзагообразной линией, которую называют фортификационным спектром.
Рис. 1.2.Как сигналы передаются по нервам от сетчатки в зрительную зону коры
Сигнал о свете из левой стороны поля зрения поступает в правое полушарие. Мозг показан снизу.
Прежде чем информация из первичной зрительной коры будет передана дальше в мозг для следующего этапа обработки, полученное изображение раскладывается на составляющие, такие как информация о форме, цвете и движении. Эти составляющие зрительной информации передаются дальше в разные участки мозга. В редких случаях мозговые травмы могут затрагивать участки мозга, задействованные в обработке лишь одной из этих составляющих, в то время как остальные участки остаются неповрежденными. Если повреждена область, связанная с восприятием цвета (V4), человек видит мир бесцветным (такой синдром называется ахроматопсией, или цветовой слепотой). Все мы видели черно-белые фильмы и фотографии, поэтому не так уж сложно представить себе ощущения людей, страдающих этим синдромом. Намного сложнее представить себе мир человека, у которого повреждена зона, связанная со зрительным восприятием движения (V5). С течением времени видимые объекты, например машины, меняют свое положение в поле зрения – но при этом человеку не кажется, что они движутся (такой синдром называют акинетопсией). Это ощущение, вероятно, представляет собой нечто противоположное иллюзии водопада, которую я упоминал в прологе. При этой иллюзии, которую каждый из нас может испытать, объекты не меняют своего положения в поле зрения, но нам кажется, что они движутся.
Рис. 1.3.Как повреждения зрительной коры влияют на восприятие
Повреждения зрительной коры вызывают слепоту на определенных участках поля зрения. Потеря всей зрительной коры правого полушария вызывает слепоту на всей левой стороне поля зрения (гемиопия). Потеря небольшого участка в нижней половине зрительной коры правого полушария приводит к появлению слепого пятна в левой верхней половине поля зрения (скотома). Потеря всей нижней половины зрительной коры правого полушария вызывает слепоту на всей верхней половине левой стороны поля зрения (квадрантная гемианопсия).
Рис. 1.4.Развитие слепого пятна при мигрени по Карлу Лэшли
Симптом начинается с того, что в районе середины поля зрения возникает слепое пятно, которое затем постепенно увеличивается в размерах.
На следующем этапе обработки зрительной информации такие ее составляющие, как информация о форме и цвете, вновь совмещаются для распознавания находящихся в поле зрения объектов. Участки мозга, в которых это происходит, иногда оказываются повреждены, в то время как области, где проходят предыдущие этапы обработки зрительной информации, остаются неповрежденными. У людей с такими травмами могут быть проблемы с распознаванием видимых объектов. Они в состоянии видеть и описывать различные характеристики объекта, но не понимают, что это такое. Подобное нарушение способности узнавания называют агнозией[25]. При этом синдроме первичная зрительная информация продолжает поступать в мозг, но осмыслить ее человек уже не может. При одной из разновидностей этого синдрома люди не способны узнавать лица (это прозопагнозия, или агнозия на лица). Человек понимает, что видит пред собой лицо, но не может понять, чье оно. У таких людей повреждена область, связанная с восприятием лиц, о которой я рассказывал в прологе.
Кажется, что с этими наблюдениями все ясно. Повреждения мозга затрудняют передачу информации об окружающем мире, собираемой органами чувств. Характер воздействия этих повреждений на нашу способность познавать окружающий мир определяется тем этапом передачи информации, на котором сказывается повреждение. Но иногда наш мозг может играть с нами странные шутки.
Когда мозг говорит неправду
Неведомые знания человека с синдромом слепозрения, по крайней мере, соответствуют действительности. Но иногда мозговые травмы приводят к тому, что сознание получает об окружающем мире сведения, которые в действительности совершенно не соответствуют. Одну глухую старушку среди ночи разбудили звуки громкой музыки. Она обыскала всю квартиру в поисках источника этих звуков, но нигде не могла его найти. В конце концов она поняла, что музыка звучала только у нее в голове. С тех пор она почти всегда слышала эту несуществующую музыку. Иногда это был баритон под аккомпанемент гитары, а иногда хор в сопровождении целого оркестра.
Рис. 1.6.Спонтанная активность мозга, связанная со слепотой (синдром Шарля Бонне) вызывает зрительные галлюцинации
Характер этих галлюцинаций зависит от того, в каком участке мозга наблюдается активность. Мозг показан снизу.
Отчетливые слуховые и зрительные галлюцинации бывают примерно у 10 % пожилых людей, страдающих от тяжелых форм потери слуха или зрения. Зрительные галлюцинации, возникающие при синдроме Шарля Бонне[29], часто представляют собой лишь разноцветные пятна или узоры. Люди, страдающие этим синдромом, видят тончайшие сетки из золотой проволоки, овалы, заполненные узором, похожим на кирпичную кладку, или фейерверки из ярких разноцветных взрывов. Иногда галлюцинации принимают вид человеческих лиц или фигур. Эти лица обычно кривые и уродливые, с выступающими глазами и зубами. Фигуры людей, о которых рассказывают пациенты, обычно маленькие, в шляпах или костюмах определенной эпохи.
Видны головы мужчин и женщин XVII века, с приятными густыми волосами. Наверное, парики. Все смотрят крайне неодобрительно. Никогда не улыбаются.
Доминик Ффитч и его коллеги из Института психиатрии сканировали во время подобных галлюцинаций мозг людей, страдающих синдромом Шарля Бонне. Непосредственно перед тем, как человек видел перед собой чьи-то лица, у него начинала увеличиваться активность области, связанной с восприятием лиц. Точно так же активность в области, связанной с восприятием цвета, начинала увеличиваться непосредственно перед тем, как испытуемый сообщал, что видит цветное пятно.
Иллюзия полноты восприятия
Представим себе, что я завязал вам глаза и привел в незнакомую комнату. Затем я снимаю с ваших глаз повязку, и вы осматриваетесь по сторонам. Даже в том необычном случае, если в одном углу комнаты будет слон, а в другом – швейная машинка, вы сразу получите представление о том, что находится в этой комнате. Вам не придется ни задумываться, ни прикладывать усилий, чтобы получить это представление.
В первой половине XIX века человеческая способность легко и быстро воспринимать окружающий мир находилась в полном согласии с представлениями того времени о работе мозга. Уже было известно, что нервная система состоит из нервных волокон, по которым передаются электрические сигналы[41]. Было известно, что электрическая энергия может переноситься очень быстро (со скоростью света), а значит, наше восприятие окружающего мира с помощью нервных волокон, идущих от наших глаз, вполне могло быть почти мгновенным. Профессор, у которого учился Герман Гельмгольц, говорил ему, что измерить скорость распространения сигналов по нервам невозможно. Считалось, что эта скорость слишком велика. Но Гельмгольц, как и подобает хорошему студенту, пренебрег этим советом. В 1852 году ему удалось измерить скорость распространения нервных сигналов и показать, что эта скорость сравнительно невелика. По отросткам чувствительных нейронов нервный импульс распространяется на 1 метр примерно за 20 миллисекунд. Гельмгольц также измерил “время восприятия”: он просил испытуемых нажимать на кнопку, как только они почувствуют прикосновение к той или иной части тела. Оказалось, что это требует еще больше времени, более 100 миллисекунд. Эти наблюдения показали, что мы воспринимаем объекты окружающего мира не мгновенно. Гельмгольц понял, что прежде, чем какой-либо объект окружающего мира отобразится в сознании, в мозгу должен пройти целый ряд процессов. Он выдвинул идею о том, что наше восприятие окружающего мира не непосредственно, а зависит от “неосознанных умозаключений”[42]. Иными словами, прежде чем мы воспримем какой-либо объект, мозг должен заключить, что это может быть за объект, на основании информации, поступающей от органов чувств.
Нам не только кажется, что мы воспринимаем мир мгновенно и без усилий, нам также кажется, что мы видим все поле зрения отчетливо и в подробностях. Это тоже иллюзия.
Мы видим в подробностях и в цвете только центральную часть поля зрения, свет от которой попадает в центр сетчатки. Это связано с тем, что только в центре сетчатки (в области центральной ямки) имеются плотно упакованные светочувствительные нейроны (колбочки). Под углом около 10° от центра светочувствительные нейроны (палочки) расположены уже не так тесно и различают только цвет и тень. По краям поля зрения мы видим мир размытым и бесцветным.
В норме мы не осознаём этой размытости нашего поля зрения. Наши глаза пребывают в постоянном движении, так что любая часть поля зрения может оказаться в центре, где она будет видна в подробностях. Но даже когда мы думаем, что осмотрели все, что есть в поле зрения, мы по-прежнему находимся в плену иллюзии. В 1997 году Рон Ренсинк и его коллеги описали “слепоту к изменениям” (change blindness), и с тех пор это явление стало у всех, кто занимается когнитивной психологией, излюбленным предметом для демонстраций на днях открытых дверей.
Рис. 2.1.В нашем поле зрения всё, кроме центрального участка, размыто Вверху – кажущееся видимое изображение. Внизу – реальное видимое изображение.
Проблема психологов состоит в том, что каждый человек что-то знает о предмете нашей науки из личного опыта. Мне бы и в голову не пришло объяснять кому-то, кто занимается молекулярной генетикой или ядерной физикой, как им интерпретировать их данные, но они преспокойно объясняют мне, как мне интерпретировать мои. Слепота к изменению так нравится нам, психологам, потому что с ее помощью мы можем продемонстрировать людям, что их личный опыт обманчив. Мы знаем об их сознании что-то такое, чего сами они не знают.
Профессор английского языка пришла на день открытых дверей нашего отделения и героически старается не подать виду, что ей скучно. Я демонстрирую ей явление слепоты к изменению.
Демонстрация включает два варианта сложной картинки, между которыми есть одно отличие. В данном случае это фотография военно-тран