Индивидуальное и историческое развитие. Закон зародышевого сходства. Биогенетический закон.Рекапитуляция.
Онтогенез– реализация генетической информации, происходящая на всех стадиях.
Онтогенез – генетически контролируемый процесс. В ходе онтогенеза реализуется генотип и формируется фенотип.
Онтогенез - индивидуальное развитие организма, совокупность последовательных морфологических, физиологических и биохимических преобразований, претерпеваемых организмом от момента его зарождения до конца жизни. О. включает рост, т. е. увеличение массы тела, его размеров, дифференцировку. Термин "О." введён Э. Геккелем (1866) при формулировании им биогенетического закона.
Первую попытку исторического обоснования О. сделал И. ф. Меккель. Проблема соотношения О. и филогенеза была поставлена Ч. Дарвином и разрабатывалась Ф. Мюллером,Э. Геккелем и др. Все связанные с изменением наследственности, новые в эволюционном отношении признаки возникают в О., но лишь те из них, которые способствуют лучшему приспособлению организма к условиям существования, сохраняются в процессе естественного отбора и передаются последующим поколениям, т. е. закрепляются в эволюции. Познание закономерностей, причин и факторов О. служит научной основой для отыскания средств влияния на развитие растений, животных и человека, что имеет важнейшее значение для практики растениеводства и животноводства, а также для медицины.
Филогенез - историческое развитие организмов. Термин введён нем. эволюционистом Э. Геккелем в 1866. Основной задачей при изучении Ф. является реконструкция эволюционных преобразований животных, растений, микроорганизмов, установление на этой основе их происхождения и родственных связей между таксонами, к которым относятся изученные организмы. Для этой цели Э. Геккель разработал метод "тройного параллелизма", позволяющий путём сопоставления данных трёх наук – морфологии, эмбриологии и палеонтологии – восстановить ход исторического развития изучаемой систематической группы.
Закон зародышевого сходства
Исследователи начала XIX в. впервые стали обращать внимание на сходство стадий развития эмбрионов высших животных со ступенями усложнения организации, ведущими от низкоорганизованных форм к прогрессивным. Сопоставляя стадии развития зародышей разных видов и классов хордовых, К. Бэр сделал следующие выводы.
1. Эмбрионы животных одного типа на ранних стадиях развития сходны.
2. Они последовательно переходят в своем развитии от более общих признаков типа ко все более частным. В последнюю очередь развиваются признаки, указывающие на принадлежность эмбриона к определенному роду, виду, и, наконец, индивидуальные черты.
3. Эмбрионы разных представителей одного типа постепенно обособляются друг от друга.
К. Бэр, не будучи эволюционистом, не мог связывать открытые им закономерности индивидуального развития с процессом филогенеза. Поэтому сделанные им обобщения имели значение не более чем эмпирических правил.
Развитие эволюционной идеи в последующем позволило объяснить сходство ранних зародышей их историческим родством, а приобретение ими все более частных черт с постепенным обособлением друг от друга — действительным обособлением соответствующих классов, отрядов, семейств, родов и видов в процессе эволюции.
Вскоре после открытия закона зародышевого сходства Ч. Дарвин показал, что этот закон свидетельствует об общности происхождения и единства начальных этапов эволюции в пределах типа.
Биогенетический закон Геккеля-Мюллера: каждое живое существо в своем индивидуальном развитии (онтогенез) повторяет в известной степени формы, пройденного его предками или его видом (филогенез).
Онтогенез — повторение филогенеза
Сопоставляя онтогенез ракообразных с морфологией их вымерших предков, Ф. Мюллер сделал вывод о том, что ныне живущие ракообразные в своем развитии повторяют путь, пройденный их предками. Преобразование онтогенеза в эволюции, по мнению Ф. Мюллера, осуществляется благодаря его удлинению за счет добавления к нему дополнительных стадий или надставок. На основе этих наблюдений, а также изучения развития хордовых Э. Геккель (1866) сформулировал основной биогенетический закон, в соответствии с которым онтогенез представляет собой краткое и быстрое повторение филогенеза.
Повторение структур, характерных для предков, в эмбриогенезе потомков названо рекапитуляциями. Рекапитулируют не только морфологические признаки — хорда, закладки жаберных щелей и жаберных дуг у всех хордовых, но и особенности биохимической организации и физиологии. Так, в эволюции позвоночных происходит постепенная утрата ферментов, необходимых для распада мочевой кислоты — продукта метаболизма пуринов. У большинства беспозвоночных конечный продукт распада мочевой кислоты — аммиак, у земноводных и рыб — мочевина, у многих пресмыкающихся — аллантоин, а у некоторых млекопитающих мочевая кислота вообще не расщепляется и выделяется с мочой. В эмбриогенезе млекопитающих и человека отмечены биохимические и физиологические рекапитуляции: выделение ранними зародышами аммиака, позже мочевины, затем аллантоина, а на последних стадиях развития — мочевой кислоты.
Однако в онтогенезе высокоорганизованных организмов не всегда наблюдается строгое повторение стадий исторического развития, как это следует из биогенетического закона. Так, зародыш человека никогда не повторяет взрослых стадий рыб, земноводных, пресмыкающихся и млекопитающих, а сходен по ряду черт лишь с их зародышами. Ранние стадии развития сохраняют наибольшую консервативность, благодаря чему рекапитулируют более полно, чем поздние. Это связано с тем, что одним из наиболее важных механизмов интеграции ранних этапов эмбриогенеза является эмбриональная индукция, а структуры зародыша, формирующиеся в первую очередь, такие, как хорда, нервная трубка, глотка, кишка и сомиты, представляют собой организационные центры зародыша, от которых зависит весь ход развития.
Генетическая основа рекапитуляции заключена в единстве механизмов генетического контроля развития, сохраняющемся на базе общих генов регуляции онтогенеза, которые достаются родственным группам организмов от общих предков.
Рекапитуляция (от лат. recapitulatio – повторение) — понятие, используемое в биологии для обозначения повторения в индивидуальном развитии признаков, свойственных более ранней стадии эволюционного развития.
Билет 96.
Онтогенез как основа филогенеза. Ценогенезы. Автономизация онтогенеза. Филэмбриогенезы. Учение А.Н.Северцова о филэмбриогенезах. Механизмы их возникновения. Гетерохронии и гетеротопии биологических структур в эволюции онтогенеза.
Опираясь только на основной биогенетический закон, невозможно объяснить процесс эволюции: бесконечное повторение пройденного само по себе не рождает нового. Так как жизнь существует на Земле благодаря смене поколений конкретных организмов, эволюция ее протекает благодаря изменениям, происходящим в их онтогенезах. Эти изменения сводятся к тому, что конкретные онтогенезы отклоняются от пути, проложенного предковыми формами, и приобретают новые черты.
К таким отклонениям относятся, например, ценогенезы — приспособления, возникающие у зародышей или личинок и адаптирующие их к особенностям среды обитания. У взрослых организмов ценогенезы не сохраняются. Примерами ценогенезов являются роговые образования во рту личинок бесхвостых земноводных, облегчающие им питание растительной пищей. В процессе метаморфоза у лягушонка они исчезают и пищеварительная система перестраивается для питания насекомыми и червями. К ценогенезам у амниот относят зародышевые оболочки, желточный мешок и аллантоис, а у плацентарных млекопитающих и человека — еще и плаценту с пуповиной.
Ценогенезы, проявляясь только на ранних стадиях онтогенеза, не изменяют типа организации взрослого организма, но обеспечивают более высокую вероятность выживания потомства. Они могут сопровождаться при этом уменьшением плодовитости и удлинением зародышевого или личиночного периода, благодаря чему организм в постэмбриональном или постличиночном периоде развития оказывается более зрелым и активным. Возникнув и оказавшись полезными, ценогенезы будут воспроизводиться в последующих поколениях. Так, амнион, появившийся впервые у предков пресмыкающихся в каменноугольном периоде палеозойской эры, воспроизводится у всех позвоночных, развивающихся на суше, как у яйцекладущих — пресмыкающихся и птиц, так и у плацентарных млекопитающих.
Другой тип филогенетически значимых преобразований филогенеза — филэмбриогенезы. Они представляют собой отклонения от онтогенеза, характерного для предков, проявляющиеся в эмбриогенезе, но имеющие адаптивное значение у взрослых форм. Так, закладки волосяного покрова появляются у млекопитающих на очень ранних стадиях эмбрионального развития, но сам волосяной покров имеет значение только у взрослых организмов.
Такие изменения онтогенеза, будучи полезными, закрепляются естественным отбором и воспроизводятся в последующих поколениях. В основе этих изменений лежат те же механизмы, которые обусловливают врожденные пороки развития: нарушение пролиферации клеток, их перемещения, адгезии, гибели или дифференцировки. Однако от пороков их так же, как и ценогенезы, отличает адаптивная ценность, т.е. полезность и закрепленность естественным отбором в филогенезе.
В зависимости от того, на каких этапах эмбриогенеза и морфогенеза конкретных структур возникают изменения развития, имеющие значение филэмбриогенезов, различают три их типа.
1. Анаболии, или надставки, возникают после того, как орган практически завершил свое развитие, и выражаются в добавлении дополнительных стадий, изменяющих конечный результат.
К анаболиям относят такие явления, как приобретение специфической формы тела камбалой лишь после того, как из икринки вылупляется малек, неотличимый от других рыб, а также появление изгибов позвоночника, сращение швов в мозговом черепе, окончательное перераспределение кровеносных сосудов в организме млекопитающих и человека.
2. Девиации — уклонения, возникающие в процессе морфогенеза органа. Примером может являться развитие сердца в онтогенезе млекопитающих, у которых оно рекапитулирует стадию трубки, двухкамерное и трехкамерное строение, но стадия формирования неполной перегородки, характерной для пресмыкающихся, вытесняется развитием перегородки, построенной и расположенной иначе и характерной только для млекопитающих. В развитии легких у млекопитающих также обнаруживается рекапитуляция ранних стадий предков, позднее морфогенез идет по-новому.
3. Архаллаксисы — изменения, обнаруживающиеся на уровне зачатков и выражающиеся в нарушении их расчленения, ранних дифференцировок или в появлении принципиально новых закладок. Классическим примером архаллаксиса является
развитие волос у млекопитающих, закладка которых наступает на очень ранних стадиях развития и с самого начала отличается от закладок других придатков кожи позвоночных.
По типу архаллаксиса возникают хорда у примитивных бесчерепных, хрящевой позвоночник у хрящевых рыб, развиваются нефроны вторичной почки у пресмыкающихся.
Ясно, что при эволюции за счет анаболии в онтогенезах потомков полностью реализуется основной биогенетический закон, т.е. происходят рекапитуляции всех предковых стадий развития. При девиациях ранние предковые стадии рекапитулируют, а более поздние заменяются развитием в новом направлении. Архаллаксисы полностью не допускают рекапитуляции в развитии данных структур, изменяя сами их зачатки.
Если сопоставить схему филэмбриогенезов с таблицей К. Бэра, иллюстрирующей закон зародышевого сходства, то станет понятно, что Бэр уже был очень близок к открытию филэмбриогенезов, но отсутствие эволюционной идеи в его рассуждениях не позволило более чем на 100 лет опередить научную мысль.
В эволюции онтогенеза наиболее часто встречаются анаболии как филэмбриогенезы, лишь в малой степени изменяющие целостный процесс развития. Девиации как нарушения морфогенетического процесса в эмбриогенезе часто отметаются естественным отбором и встречаются поэтому значительно реже. Наиболее редко в эволюции проявляются архаллаксисы в связи с тем, что они изменяют весь ход эмбриогенеза, и если такие изменения затрагивают зачатки жизненно важных органов или органов, имеющих значение эмбриональных организационных центров, то часто они оказываются несовместимыми с жизнью.
В одной и той же филогенетической группе эволюция в разных системах органов может происходить за счет разных филэмбриогенезов.
Так, в онтогенезе млекопитающих прослеживаются все этапы развития осевого скелета в подтипе позвоночных (анаболии), в развитии сердца рекапитулируют лишь ранние стадии (девиация), а в развитии придатков кожи рекапитуляции вообще отсутствуют (архаллаксис). Знание типов филэмбриогенезов в эволюции систем органов хордовых необходимо врачу для прогнозирования возможности возникновения у плодов и новорожденных врожденных пороков развития атавистической природы. Действительно, если в системе органов, эволюционирующей путем анаболии и девиаций, возможны атавистические пороки развития за счет рекапитуляции предковых состояний, то в случае архаллаксисов это исключается полностью.
Кроме ценогенезов и филэмбриогенезов в эволюции онтогенеза могут обнаруживаться еще и отклонения времени закладки органов — гетерохронии — и места их развития — гетеротопии. Как первые, так и вторые приводят к изменению взаимосоответствия развивающихся структур и проходят жесткий контроль естественного отбора. Сохраняются лишь те гетерохронии и гетеротопии, которые оказываются полезными. Примерами таких адаптивных гетерохронии являются сдвиги во времени закладок наиболее жизненно важных органов в группах, эволюционирующих по типу арогенеза. Так, у млекопитающих, и в особенности у человека, дифференцировка переднего мозга существенно опережает развитие других его отделов.
Гетеротопии приводят к формированию новых пространственных и функциональных связей между органами, обеспечивая в дальнейшем их совместную эволюцию. Так, сердце, располагающееся у рыб под глоткой, обеспечивает эффективное поступление крови в жаберные артерии для газообмена. Перемещаясь в загрудинную область у наземных позвоночных, оно развивается и функционирует уже в едином комплексе с новыми органами дыхания — легкими, выполняя и здесь в первую очередь функцию доставки крови к дыхательной системе для газообмена.
Гетерохронии и гетеротопии в зависимости от того, на каких стадиях эмбриогенеза и морфогенеза органов они проявляются, могут быть расценены как филэмбриогенезы разных типов. Так, перемещение зачатков головного мозга, приводящее к его изгибу, характерному для амниот, и проявляющееся на начальных этапах его дифференцировки, является архаллаксисом, а гетеротопия семенника у человека из брюшной полости через паховый канал в мошонку, наблюдающаяся в конце эмбриогенеза после окончательного его формирования, — типичная анаболия.
Иногда процессы гетеротопии, одинаковые по результатам, могут являться филэмбриогенезами разных типов. Например, у различных классов позвоночных очень часто встречается перемещение поясов конечностей. У многих групп рыб, ведущих придонный образ жизни, брюшные плавники (задние конечности) располагаются кпереди от грудных, а у млекопитающих и человека плечевой пояс и передние конечности в дефинитивном состоянии находятся значительно каудальнее места их первоначальной закладки. В связи с этим иннервация плечевого пояса у них осуществляется нервами, связанными не с грудными, а с шейными сегментами спинного мозга. У упомянутых выше рыб брюшные плавники иннервируются нервами не задних туловищных, а передних сегментов, расположенных кпереди от центров иннервации грудных плавников. Это свидетельствует о гетеротопии закладки плавников уже на стадии самых ранних зачатков, в то время как перемещение переднего пояса конечностей у человека происходит на более поздних этапах, когда иннервация их уже полностью осуществлена. Очевидно, в первом случае гетеротопия представляет собой архаллаксис, в то время как во втором — анаболию.
Ценогенезы, филэмбриогенезы, а также гетеротопии и гетерохронии, оказавшись полезными, закрепляются в потомстве и воспроизводятся в последующих поколениях до тех пор, пока новые адаптивные изменения онтогенеза не вытеснят их, заменив собой. Благодаря этому онтогенез не только кратко повторяет эволюционный путь, пройденный предками, но и прокладывает новые направления филогенеза в будущем.
Ценогенез(от греч. kainós — новый и ...генез (См. …генез) приспособление организма, возникающее на стадии зародыша (плода) или личинки и не сохраняющееся у взрослой особи. Примеры Ц. — плацента млекопитающих, обеспечивающая у плода дыхание, питание и выделение; наружные жабры личинок земноводных; яйцевой зуб у птиц, служащий птенцам для пробивания скорлупы яйца; органы прикрепления у личинки асцидий, плавательный хвост у личинки трематод — церкария и др. Термин «Ц.» введён в 1866 Э. Геккелем для обозначения тех признаков, которые, нарушая проявления палингенезов, т. е. повторений далёких этапов филогенеза в процессе зародышевого развития особи, не позволяют проследить в ходе онтогенеза современных форм последовательность этапов филогенеза их предков, т. е. нарушают Биогенетический закон. В конце 19 в. Ц. стали называть любое изменение свойственного предкам хода онтогенеза (немецкие учёные Э. Менерт, Ф. Кейбель и др.). Современное понимание термина «Ц.» сформировалось в результате работ А. Н. Северцова, сохранившего за этим понятием лишь значение провизорных приспособлений, или эмбрио-адаптаций. См. также Филэмбриогенез.
Ценогенез (греч. kainos новый + genesis зарождение, образование) - появление у зародыша или личинки приспособлений к условиям существования, не свойственных взрослым стадиям, напр. образование оболочек у зародышей высших животных.
Филэмбриогенез(от греч. phýlon – племя, род, вид и Эмбриогенез) эволюционное изменение хода индивидуального развития организмов. Термин введён в 1910 А. Н. Северцовым. Основным положением теории Ф. является представление о первичности онтогенетических изменений по отношению к филогенетическим (эволюционным) изменениям; если бы не изменялся ход Онтогенеза, то потомки не отличались бы от предков. Посредством Ф. может изменяться ход онтогенеза как целостного организма, так и отдельных органов, тканей и клеток. Путём Ф. происходят филогенетические изменения как взрослого организма, так и промежуточных стадий его развития. Существует несколько модусов (способов) Ф., важнейшими из них являются: Анаболия (надставка конечных стадий развития), Девиация (изменение на средних стадиях) и Архаллаксис (изменение первичных зачатков). Т. о., модусы Ф. различаются по времени возникновения и по характеру эволюционных преобразований. Посредством модусов Ф. может происходить как прогрессивное развитие (путём усложнения строения и функций организмов), так и регрессивное (путём упрощения строения и функций организмов вследствие приспособления их к новым, менее разнообразным условиям существования), например при паразитизме
или же так
ФИЛЭМБРИОГЕНЕ́З (от греч. phylon — род, племя, embryon — зародыш и genesis — происхождение), эволюционное изменение онтогенеза органов, тканей и клеток, связанное как с прогрессивным развитием, так и с редукцией. Учение о филэмбриогенезе разработано российским биологом-эволюционистом А.Н. Северцовым. Модусы (способы) филэмбриогенеза различаются по времени возникновения в процессе развития этих структур.
Если развитие определенного органа у потомков продолжается после той стадии, на которой оно заканчивалось у предков, происходит анаболия (от греч. anabole — подъем) — надставка конечной стадии развития. Примером может служить формирование четырехкамерного сердца у млекопитающих. У земноводных сердце трехкамерное: два предсердия и один желудочек. У пресмыкающихся в желудочке развивается перегородка (первая анаболия), однако эта перегородка у большинства из них неполная — она только уменьшает перемешивание артериальной и венозной крови. У крокодилов и млекопитающих развитие перегородки продолжается до полного разделения правого и левого желудочков (вторая анаболия). У детей иногда как атавизм межжелудочковая перегородка бывает недоразвитой, что ведет к тяжелому заболеванию, требующему хирургического вмешательства.
Продление развития органа не требует глубоких изменений предшествующих стадий его онтогенеза, поэтому анаболия — наиболее распространенный способ филэмбриогенеза. Предшествующие анаболиям стадии развития органов остаются сопоставимыми с этапами филогенеза предков (т. е. являются рекапитуляциями) и могут служить для его реконструкции (см. Биогенетический закон). Если развитие органа на промежуточных стадиях уклоняется от того пути, по которому шел его онтогенез у предков, происходит девиация (от позднелат. deviatio — отклонение). Например, у рыб и у пресмыкающихся чешуи возникают как утолщения эпидермиса и подстилающего его соединительно-тканного слоя кожи — кориума. Постепенно утолщаясь, эта закладка выгибается наружу. Затем у рыб кориум окостеневает, формирующаяся костная чешуя протыкает эпидермис и выдвигается на поверхность тела. У пресмыкающихся, напротив, кость не образуется, но эпидермис ороговевает, образуя роговые чешуи ящериц и змей. У крокодилов кориум может окостеневать, образуя костную основу роговых чешуй. Девиации приводят к более глубокой, чем анаболии, перестройке онтогенеза, поэтому они встречаются реже.
Реже всего возникают изменения первичных зачатков органов — архаллаксисы (от греч. arche — начало и allaxis — изменение). При девиации рекапитуляцию можно проследить от закладки органа до момента уклонения развития. При архаллаксисе рекапитуляции нет. Примером может служить развитие тел позвонков у земноводных. У ископаемых земноводных — стегоцефалов и у современных бесхвостых земноводных тела позвонков формируются вокруг хорды из нескольких, обычно трех с каждой стороны тела, отдельных закладок, которые затем сливаются, образуя тело позвонка. У хвостатых земноводных эти закладки не возникают. Окостенение разрастается сверху и снизу, охватывая хорду, так что сразу образуется костная трубка, которая, утолщаясь, становится телом позвонка. Этот архаллаксис является причиной до сих пор дискутируемого вопроса о происхождении хвостатых земноводных. Одни ученые считают, что они произошли непосредственно от кистеперых рыб, независимо от остальных наземных позвоночных. Другие — что хвостатые земноводные очень рано дивергировали от остальных земноводных. Третьи, пренебрегая развитием позвонков, доказывают близкое родство хвостатых и бесхвостых земноводных.
Редукция органов, утративших свое адаптивное значение, тоже происходит путем филэмбриогенеза, главным образом, посредством отрицательной анаболии — выпадения конечных стадий развития. При этом орган либо недоразвивается и становится рудиментом, либо претерпевает обратное развитие и полностью исчезает. Примером рудимента может служить аппендикс человека — недоразвитая слепая кишка, примером полного исчезновения — хвост головастиков лягушек. В течение всей жизни в воде хвост растет, на его конце добавляются новые позвонки и мышечные сегменты. Во время метаморфоза, когда головастик превращается в лягушку, хвост рассасывается, причем процесс идет в обратном порядке — от конца к основанию. Филэмбриогенез — основной способ адаптивного изменения строения организмов в ходе филогенеза.
Билет 97
Принципы (способы) филогенетических преобразований органов и функций. Соответствие структуры и функции в живых системах. Полифункциональность Количественные и качественные изменения функций биологических структур.
.
Принципы филогенетических преобразований
Органом называют исторически сложившуюся специализированную систему тканей, характеризующуюся отграниченностью, постоянством формы, локализации, внутренней конструкции путей кровообращения и иннервации, развитием в онтогенезе и специфическими функциями. Строение органов часто очень сложно. Большинство из них полифункционально, т.е. выполняет одновременно несколько функций. В то же время в реализации какой-либо сложной функции могут участвовать различные органы.Группу сходных по происхождению органов, объединяющихся для выполнения сложной функции, называют системой (кровеносная, выделительная и др.).Если одну и ту же функцию выполняет группа органов разного происхождения, ее называют аппаратом. Примером служит дыхательный аппарат, состоящий как из органов собственно дыхания, так и из элементов скелета и мышечной системы, обеспечивающих дыхательные движения.
В процессе онтогенеза происходит развитие, а часто и замена одних органов другими. Органы зрелого организма называют дефинитивными; органы, развивающиеся и функционирующие только в зародышевом или личиночном развитии, — провизорными. Примерами провизорных органов являются жабры личинок земноводных, первичная почка и зародышевые оболочки высших позвоночных животных (амниот).
В историческом развитии преобразования органов могут иметь прогрессивный или регрессивный характер. В первом случае органы увеличиваются в размерах и становятся более сложными по своему строению, во втором — уменьшаются в размерах, а их строение упрощается.
Если у двух организмов, находящихся на разных уровнях организации, обнаруживаются органы, которые построены по единому плану, расположены в одинаковом месте и развиваются сходным образом из одинаковых эмбриональных зачатков, то это свидетельствует о родстве данных организмов. Такие органы называют гомологичными. Гомологичные органы часто выполняют одну и ту же функцию (например, сердце рыбы, земноводного, пресмыкающегося и млекопитающего), но в процессе эволюции функции могут и меняться (например, передних конечностей рыб и земноводных, пресмыкающихся и птиц).
При обитании неродственных организмов в одинаковых средах у них могут возникать сходные приспособления, которые проявляются в возникновении аналогичных органов. Аналогичные органы выполняют одинаковые функции, строение же их, местоположение и развитие резко различны. Примерами таких органов являются крылья насекомых и птиц, конечности и челюстной аппарат членистоногих и позвоночных.
Строение органов строго соответствует выполняемым ими функциям. При этом в исторических преобразованиях органов изменение функций непременно сопровождается и изменением морфологических характеристик органа.
Основным принципом эволюции органических структур является принцип дифференциации. Дифференциация представляет собой разделение однородной структуры на обособленные части, которые в силу различного положения, связей с другими органами и различных функций приобретают специфическое строение. Таким образом, усложнение структуры всегда связано с усложнением функций и специализацией отдельных частей. Дифференцированная структура выполняет несколько функций, и строение ее сложно.
Примером филогенетической дифференциации может являться эволюция кровеносной системы в типе хордовых. Так, у представителей подтипа бесчерепных она построена очень просто: один круг кровообращения, отсутствие сердца и капилляров в системе жаберных артерий.
В надклассе рыб имеются двухкамерное сердце и жаберные капилляры. У земноводных впервые появляется разделение кровеносной системы на два круга кровообращения, а сердце становится трехкамерным. Максимальная дифференциация характерна для кровеносной системы млекопитающих, сердце которых четырехкамерное, а в сосудах достигается полное разобщение венозного и артериального кровотоков.
Отдельные части дифференцирующейся, ранее однородной структуры, специализируясь на выполнении одной функции, становятся функционально все более зависимыми от других частей данной структуры и от организма в целом. Такое функциональное соподчинение отдельных компонентов системы в целостном организме называют интеграцией.
Четырехкамерное сердце млекопитающих представляет собой пример высокоинтегрированной структуры: каждый отдел выполняет лишь свою специальную функцию, не имеющую никакого смысла в отрыве от функций других отделов. Поэтому сердце снабжено автономной системой функциональной регуляции в виде парасимпатического атриовентрикулярного нервного узла и при этом строго подчинено нейрогуморальной системе регуляции организма в целом.
Таким образом, одновременно с дифференциацией наблюдается и подчинение частей целостной системе организма, т.е. процесс интергации.
В процессе эволюции закономерным является как возникновение новых структур, так и их исчезновение. В основе лежит принцип дифференциации, проявляющийся на фоне первичной полифункциональности и способности функций изменяться количественно. Любая структура при этом возникает на основе предшествующих структур вне зависимости от того, на каком уровне организации живого осуществляется процесс филогенеза. Так, известно, что около 1 млрд. лет назад исходный белок глобин вслед за дупликацией исходного гена дифференцировался на мио- и гемоглобин — белки, входящие в состав соответственно мышечных и кровяных клеток и дифференцировавшиеся в связи с этим по функциям. В филогенезе центральной нервной системы хордовых также можно видеть дифференцировку и смену функций структур: головной мозг формируется из переднего конца нервной трубки. Таким же образом новые биологические виды образуются в виде изолированных популяций исходных видов (см. § 11.6), а новые биогеоценозы — за счет дифференцировки предсуществующих (см. § 16.2).
В связи с тем что ниже будут рассмотрены филогенезы конкретных систем органов, подробнее остановимся на закономерностях возникновения и исчезновения органов. Примером возникновения органов служит происхождение матки плацентарных млекопитающих от парных яйцеводов. При удлинении эмбрионального развития млекопитающих возникает необходимость более длительной задержки зародыша в организме матери. Это может осуществляться только в каудальных отделах яйцеводов, полость которых при этом увеличивается, а стенка дифференцируется таким образом, что к ней прикрепляется плацента, обеспечивающая взаимосвязь организма матери и плода. В процессе естественного отбора сохранялись и успешно размножались в первую очередь те млекопитающие, в организмах самок которых потомство развивалось наиболее долго. В итоге возник новый орган — матка, обеспечивающий зародышу оптимальные условия внутриутробного развития (см. разд. 14.5.3) и повышающий выживаемость соответствующих видов.
В возникновении такого более сложного и специализированного органа, как глаз, наблюдаются те же закономерности. В основе формирования органа зрения, как и всех органов чувств, лежат клетки кожного эпителия, среди которых дифференцируются и рецепторные, в частности светочувствительные. Объединение их в группы приводит к возникновению примитивных обособленных органов зрения, позволяющих животным лишь оценивать освещенность. Погружение такого светочувствительного органа под кожу обеспечивает сохранность нежных клеток, но при этом зрительная функция может осуществляться только благодаря возникновению прозрачности покровов. Чувствительность к свету примитивного органа зрения усиливается при утолщении прозрачных покровов и приобретении ими способностей преломлять свет и фокусировать его лучи на чувствительных клетках глаза. Сложный орган требует вспомогательного аппарата — защитных структур, мышц, приводящих его в движение, и т.д. Возросший уровень сложности организации глаза с необходимостью сопровождается усложнением регуляции его функций, что и выражается в усилении его интеграции как целостной системы.
Исчезновение, или редукция, органа в филогенезе может быть связана с тремя разными причинами и имеет различные механизмы. Во-первых, орган, выполнявший ранее важные функции, может оказаться в новых условиях вредным. Против него срабатывает естественный отбор, и орган довольно быстро может полностью исчезнуть. Примеров такого прямого исчезновения органов немного. Так, многие насекомые малых океанических островов бескрылы вследствие постоянной элиминации из их популяций летающих особей ветром. Чаще наблюдается исчезновение органов благодаря их субституции новыми структурами, выполняющими прежние функции с большей интенсивностью. Так исчезают, например, у пресмыкающихся и млекопитающих предпочки и первичные почки, заменяясь функционально вторичными почками. Таким же образом у рыб и земноводных происходит вытеснение хорды позвоночником.
Самый частый путь к исчезновению органов — через постепенное ослабление их функций. Такие ситуации возникают обычно при изменении условий существования. Орган, почти не выполняющий функций, выходит из-под контроля естественного отбора и проявляет обычно повышенную изменчивость. Возникающие изменения вызывают нарушение коррелятивных связей с другими частями организма. Благодаря этому такой орган зачастую становится вредным и против него начинает действовать естественный отбор.
В медицинской практике широко известно, что рудиментарные органы и у человека характеризуются широкой изменчивостью. Третьи большие коренные зубы, или «зубы мудрости», например, характеризуются не только значительной вариабельностью строения и размеров, но и разными сроками прорезывания, а также особой подверженностью кариесу. Иногда они вообще не прорезываются, а нередко, прорезавшись, в течение ближайших лет полностью разрушаются. То же касается и червеобразного отростка слепой кишки (аппендикса), который в норме может иметь длину от 2 до 20 см и быть расположенным по-разному (за брюшиной, на длинной брыжейке, позади слепой кишки и т.д.). Кроме того, воспаление аппендикса (аппендицит) встречается значительно чаще, чем воспалительные процессы в других отделах кишечника.
Процесс редукции органа противоположен по отношению к его нормальному морфогенезу. Прежде всего выпадают закладки таких частей органа, которые в норме формируются последними. При недоразвитии конечностей у человека обычно в первую очередь недоразвиваются фаланги I и V пальцев, закладывающиеся последними. У китообразных, совершенно лишенных задних конечностей благодаря ослаблению их функций в филогенезе, все же остаются закладки элементов тазового пояса, формирующиеся в процессе морфогенеза наиболее рано.
Исследования генетических основ редукции органов показали, что структурные гены, регулирующие морфогенез, не исчезают, в то время как существенным изменениям подвергаются гены, регулирующие время закладки рудиментарных органов, либо гены, ответственные за феномен индукционных взаимодействий в развивающемся зародыше. Действительно, при пересадках мезодермального материала дна ротовой полости зародыша ящерицы в ротовую полость развивающегося цыпленка возможно формирование у последнего зубов типичного строения, а пересадка кожной мезодермы ящерицы под эпидермис спины цыпленка приводит к формированию в нем типичных роговых чешуи вместо перьев.
Недоразвившиеся органы носят название рудиментарных или рудиментов. К рудиментам у человека относят, во-первых, структуры, потерявшие свои функции в постнатальном онтогенезе, но сохраняющиеся и после рождения (волосяной покров, мышцы ушной раковины, копчик, аппендикс как пищеварительный орган), и, во-вторых, органы, сохраняющиеся только в эмбриональ