Потоки бактериальных метаболитов
При участии бактериальной флоры кишечника формируются три потока, направленные из желудочно-кишечного тракта во внутреннюю среду организма. Один из них — поток нутриентов, модифицированных микрофлорой (например, амины, возникающие при декарбоксилировании аминокислот), второй — поток продуктов жизнедеятельности самих бактерий и третий — поток модифицированных бактериальной флорой балластных веществ. При участии микрофлоры образуются вторичные нутриенты, в том числе моносахариды, летучие жирные кислоты, витамины, незаменимые аминокислоты и т. д., вещества, которые при сегодняшнем уровне знаний представляются индифферентными, и токсические соединения. Именно наличие токсических соединений породило идею о целесообразности подавления кишечной микрофлоры, высказанную еще И. И. Мечниковым. Однако, возможно, токсические вещества, если их количество не переходит определенных границ, физиологичны и являются постоянными и неизбежными спутниками экзотрофии.
Некоторые токсические вещества, в частности токсические амины, образующиеся в пищеварительном аппарате под влиянием бактериальной флоры, давно привлекают внимание. Среди аминов, обладающих высокой физиологической активностью, описаны кадаверин, гистамин, октопамин, тирамин, пирролидин, пиперидин, диметиламин и др. (Lindblad et al., 1979). Определенное представление о содержании этих аминов в организме дает уровень их экскреции с мочой. Некоторые из них заметно влияют на состояние организма (табл. 3.1). При различных формах заболеваний, в частности дисбактериозах, уровень аминов может резко возрастать и быть одной из причин нарушений ряда функций организма. Продукция токсических аминов может быть подавлена антибиотиками.
Таблица 3.1. Уровень аминов преимущественно кишечного бактериального происхождения (по: Lindblad et al., 1979)
Амины | Количество, секретируемое в сутки (мг) | Источник | Физиологический фактор |
Диметиламин | 20.0 | Холин Лецитин Метиламин | |
Пиперидин | 0.8 | Лизин | Церебральная депрессия Гипертензия |
Пирролидин | 0.4 | Аргинин Орнитин | Церебральная депрессия Гипертензия |
Тирамин | Тирозин | Гипертензия | |
Октопамин | Тирозин | ||
Гистамин | Желудочная секреция Вазодилатация Лейкотаксис |
По-видимому, в ходе эволюции некоторые токсические амины включились в регуляторные системы организма. В качестве примера можно привести гистамин, образующийся при декарбоксилировании гистидина. Как известно, гистамин продуцируется преимущественно клетками желудка, морфологически сходными с тучными, и контролирует ряд функций гипоталамо-гипофизарной системы, секрецию соляной кислоты клетками желудка и при некоторых условиях способствует образованию язв желудка и двенадцатиперстной кишки. В начале 80-х годов было показано, что развитие таких язв происходит при участии Н2-рецептоторов. Использование Н2-блокаторов (например, циметидина) вызывает не только исчезновение язв желудка и выключение кислой желудочной секреции, но и возникновение психических, урологических и эндокринных нарушений (обзор: Domschke, Domschke,1981, и др.).
Наряду с эндогенным существует экзогенный гистамин, образующийся главным образом в кишечнике в результате бактериальной активности. Поэтому применение антибиотиков может приводить к ряду сдвигов гормонального статуса организма. Возможно, многие патологические изменения в организме провоцируются не за счет гиперфункции клеток желудка, секретирующих гистамин, а благодаря его избыточной продукции в кишечнике бактериальной флорой. Так, при гиперпродукции гистамина бактериальной флорой кишечника появляются язвы желудка, склонность к нарушению гипоталамо-гипофизарных функций, к аллергии и т. д.
Что касается вторичных нутриентов, образующихся из балластных веществ за счет главным образом бактериального метаболизма, то в их число входит значительная доля различных витаминов, незаменимых аминокислот, углеводов, жиров и т. д. Физиологическая важность вторичных нутриентов доказывается тем, что безмикробные животные чрезвычайно чувствительны к колебаниям состава пищи, тогда как обычные животные устойчивы к ним. О физиологической важности вторичных нутриентов свидетельствует резкое повышение потребности в витаминах у человека и животных, у которых бактериальная флора подавлена антибиотиками (обзоры: Germfree research…, 1973; Чахава и др., 1982; Simon, Gorbach, 1987; Snoeyenbos, 1989, и др.).
Трансформация балластных веществ в кишечнике происходит преимущественно под действием анаэробной микрофлоры. Предполагается, что переход от физиологического состояния к патологическому реализуется благодаря усилению ферментативных процессов. Однако те процессы, которые в толстой кишке человека могут служить причиной заболеваний, в желудке жвачных и многих полигастричных травоядных животных являются основным способом утилизации грубых кормов, недоступных ферментам самого животного (обзоры: Prosser, Brown,1967; Сравнительная физиология…, 1977; Schmidt-Nielsen, 1982; Martin, 1989; Williams, 1989, и др.).
Кроме перечисленных потоков, существует поток веществ, поступающих с пищей, загрязненной в результате различных промышленных и аграрных технологий, или из загрязненной среды. В этот поток входят также ксенобиотики.
3.4. Пищевые волокна
В соответствии с теорией сбалансированного питания, в желудочно-кишечном тракте происходит разделение пищевых веществ на нутриенты и балласт. Полезные вещества расщепляются и всасываются, тогда как балластные выбрасываются из организма. Однако, по-видимому, в ходе эволюции питание сформировалось таким образом, что становятся полезными не только утилизируемые, но и неутилизируемые компоненты пищи. В частности, это касается таких неутилизируемых балластных веществ, как пищевые волокна. Эти волокна представляют собой преимущественно полисахариды, но в их состав могут быть включены также белки, жиры и микроэлементы. К пищевым волокнам относятся такие полисахариды, как целлюлоза, гемицеллюлоза и пектин, а также лигнин, кутин, воск и др. Пищевые волокна в значительных количествах присутствуют в овощах, хлебе, неочищенных злаках и ряде других продуктов (обзоры: Пищевые волокна, 1986; Vahouny, 1987; Kritchevsky, 1988; Sakata, 1988, и др.). В табл. 3.2 представлены данные о содержании пищевых волокон в ряде натуральных продуктов.
Таблица 3.2. Содержание пищевых волокон в некоторых растительных продуктах (по: Vahouny, 1987)
Вид пищи | Общее количество волокон (г/100 г пищи) | Целлюлоза (%) | Лигнин (%) |
Латук, капуста, лук | 1.5–2.8 | 24-69 | Следы |
Морковь, турнепс, картофель | 2.2–3.7 | 29-40 | Следы |
Бобовые (горох, бобы) | 3.4–7.8 | 19-38 | 2-6 |
Фрукты (яблоки, апельсины, помидоры) | 1.5–2.0 | 14-33 | 1-21 |
Хлеб белый | 2.7 | Следы | |
Хлеб черный | 5.1 | ||
Мука | 8.5 | ||
Отруби | 24-27 | 18-22 | |
Пшеница | |||
Овсяная мука | 7.3 | 5-12 |
Рафинированные пищевые продукты приобрели широкое распространение, особенно в странах Запада (так называемый западный тип питания). При таком рационе использование пищевых волокон значительно снижено на фоне увеличенного потребления белков и животных жиров. В детальной сводке «Пищевые волокна:», опубликованной в 1986 г., приведены данные различных авторов, свидетельствующие, что за последние 100 лет потребление пищевых волокон в нашей стране в целом уменьшилось приблизительно в 2 раза. Снизилось оно и в других странах (США, ФРГ, Великобритания, Япония). В то же время существуют многочисленные сведения, что потребность в пищевых волокнах в питании населения развитых стран растет. В табл. 3.3 представлены данные о потреблении пищевых волокон жителями разных стран. В нашей стране количество пищевых волокон в рационе варьирует от 24 до 26.3 г/сут (на примере жителей Донбасса) (обзор: Пищевые волокна, 1986).
Сейчас твердо установлено, что пищевые волокна играют существенную роль в нормализации деятельности желудочно-кишечного тракта (особенно тонкой и толстой кишки), увеличивают массу мышечного слоя, влияют на его моторную активность, скорость всасывания пищевых веществ в тонкой кишке, давление в полости органов пищеварительного аппарата, электролитный обмен в организме, массу и электролитный состав фекалиев и т. д. Важно, что пищевые волокна обладают способностью связывать воду и желчные кислоты, а также адсорбировать токсические соединения. Способность связывать воду оказывает значительный эффект на скорость транзита содержимого вдоль желудочно-кишечного тракта (табл. 3.4). В литературе существуют сведения, что пищевые волокна отрубей связывают в 5 раз больше воды, чем их собственный вес, а волокна таких овощей, как морковь и репа, — в 30 раз больше. Наконец, пищевые волокна влияют на среду обитания бактерий в кишечнике и являются для них одним из источников питания. В частности, микроорганизмы используют целлюлозу, гемицеллюлозу и пектин, частично метаболизируя их в уксусную, пропионовую и масляную кислоты.
Пищевые волокна необходимы не только для нормальной деятельности пищеварительного аппарата, но и всего организма. Например, показана связь между нарушениями холестеринового обмена, образованием камней в желчном пузыре и широким распространением в развитых странах рафинированных пищевых рационов. Ошибки в структуре питания и, в частности, потребление рафинированных продуктов стали одной из причин развития многих тяжелых заболеваний у человека. Ряд нарушений, в том числе атеросклероз, гипертония, ишемическая болезнь сердца, желудочно-кишечная патология, диабет и др., во многих случаях результат не только чрезмерного потребления белков и углеводов, но и следствие недостаточного использования балластных веществ (табл. 2.1). Существуют сведения, что отсутствие пищевых волокон в диете может провоцировать рак толстой кишки. Без пищевых волокон нарушается обмен не только желчных кислот, но также холестерина и стероидных гормонов. (Поразительно, что о вреде очищенных пищевых продуктов хорошо знали уже Авиценна и его предшественник).
Таблица 3.3. Потребление пищевых волокон жителями разных стран (по: Vahouny, 1987)
Страна | Количество пищевых волокон (г/сут) | Потребление пшеницы, зерна, риса и других злаков (%) |
Австралия | ||
Австрия | 26-31 | |
Бельгия/Люксембург | 25-26 | |
Болгария | ||
Великобритания | 22-23 | |
Германия | 27-29 | |
Греция | 44-45 | |
Дания | 24-26 | |
Израиль | ||
Ирландия | 23-25 | |
Исландия | 14- 15 | |
Испания | ||
Италия | 34-35 | |
Канада | 22-24 | |
Коста-Рика | 27-29 | |
Куба | 24-25 | |
Мексика | 40-47 | |
Нидерланды | 24-25 | |
Новая Зеландия | 27-28 | |
Норвегия | 25-26 | |
Польша | 33-37 | |
Португалия | 45-50 | |
Румыния | 31-34 | |
Сингапур | ||
США | 23-25 | |
Тринидад/Тобаго | 23-24 | |
Уругвай | 20-23 | |
Финляндия | ||
Франция | ||
Чехо-Словакия | 24-26 | |
Чили | 35-36 | |
Швейцария | 26-28 | |
Швеция | 22-24 | |
Югославия | 28-44 | |
Япония | 28-32 |
Таблица 3.4. Скорость кишечного пассажа химуса, содержащего пищевые волокна разных типов (по: Пищевые волокна, 1986)
Тип пищевого волокна | Скорость пассажа химуса (мл/ч) |
Целлюлоза | |
Обычные отруби | |
Очищенные отруби | |
Грубые отруби | |
Выжимки из свеклы | |
Морковь | |
Помидоры |
Многие формы патологии желудочно-кишечного тракта и обмена веществ поддаются профилактике и лечению благодаря пищевым волокнам, введенным в рацион. Так, эти волокна могут повышать толерантность к глюкозе и модифицировать ее всасывание, что может быть использовано для предупреждения и лечения диабета, гипергликемии и ожирения. Увеличение количества пищевых волокон в рационе снижает уровень холестерина в крови, что связано с участием волокон в кругообороте желчных кислот. Показан также антитоксический эффект растительных пищевых волокон. В то же время при использовании ряда пищевых волокон всасывание некоторых микроэлементов, в особенности цинка, снижается.
Длительное употребление пищевых волокон приводит к снижению тяжести синдрома раздраженной толстой кишки и дивертикулеза ободочной кишки. Пищевые волокна способствуют успешному лечению запоров, геморроя, болезни Крона и других заболеваний желудочно-кишечного тракта, а также могут служить профилактическим средством против рецидивов язвенной болезни желудка и двенадцатиперстной кишки (обзоры: Пищевые волокна, 1986; Vahouny, 1987; Kritchevsky, 1988, и др.). В частности, при хроническом панкреатите диета, обогащенная клетчаткой, т. е. пищевыми волокнами, в большинстве случаев дает положительный терапевтический эффект (Скуя, Рубенс, 1988).
Следовательно, необходимо, чтобы в состав пищевых рационов были включены не только белки, жиры, углеводы, микроэлементы, витамины и т. д., но и пищевые волокна, которые являются ценным компонентом пищи. В то же время некоторые схемы успешного лечебного питания основаны на ограничении в рационе пищевых волокон, что зависит от вида заболевания и его тяжести.
Итак, на базе классической теории были сделаны попытки создать улучшенную и обогащенную пищу за счет удаления пищевых волокон, что привело к развитию многих заболеваний, так называемых болезней цивилизации. В настоящее время интенсивно разрабатывается противоположное направление — ведутся поиски адекватных пищевых рационов, соответствующих потребностям организма, возникшим в ходе эволюции. У человека такая эволюционно адекватная пища включает значительную долю веществ, которые длительное время неудачно называли балластом.
3.5. Эндоэкология
Такие три понятия, как микроэкология, энтеральная, или кишечная, среда и эндоэкология, или внутренняя экология организма, введены в биологию сравнительно недавно и поэтому нуждаются в расшифровке. Под микроэкологией подразумевается бактериальная флора, характерная для пищеварительного тракта данного организма, вида или популяции.
В норме микрофлора кишечника включает две главные группы организмов — аутохтонные (индигенные, или собственные) и транзиторные (или случайные).
Основная масса микроорганизмов кишечника состоит из неспороносных анаэробов и факультативных аэробов. Эти организмы населяют преимущественно толстую кишку человека и слепую кишку грызунов. В табл. 3.5 представлены микробный спектр желудочно-кишечного тракта, проксимодистальный градиент микрофлоры, численность нормальной и патогенной микрофлоры. Микрофлора кишечника, кроме проксимодистального градиента распределения различных микроорганизмов вдоль тонкой кишки, имеет также градиент, направленный от поверхности кишечной слизистой к центру просвета кишки (обзоры: Пищевые волокна, 1986; Simon, Gorbach, 1987, и др.).
Таблица 3.5. Микрофлора желудочно-кишечного тракта человека (по: Simon, Gorbach, 1987)
Микроорганизмы | Желудок | Тощая кишка | Подвздошная кишка | Фекалии |
Общее число бактерий Аэробные или факультативные бактерии | ||||
энтеробактерии | 0-102 | 0-103 | 102-106 | 104-1010 |
стрептококки | 0-103 | 0-104 | 102-106 | 105-1010 |
стафилококки | 0-102 | 0-103 | 102-105 | 104-107 |
лактобациллы | 0-103 | 0-104 | 102-105 | 106-1010 |
грибки | 0-102 | 0-102 | 102-103 | 102-106 |
Анаэробные бактерии | ||||
бактероиды | Редко | 0-102 | 103-107 | 1010–1012 |
бифидобактерии | " | 0-103 | 103-105 | 108-1012 |
стрептококки | " | 0-103 | 102-104 | 108-1011 |
клостридии | " | Редко | 102-104 | 106-1011 |
эубактерии | " | Редко | 109-1012 |
Кишечная микрофлора состоит из большого количества различных групп бактерий. Например, в слепой кишке мыши содержится около 80 различных популяций анаэробных бактерий, а в фекалиях человека — более 400–500 различных видов бактерий. При этом деятельность бактерий тесно взаимосвязана.
Энтеральная среда — это особая среда в иерархии внутренних сред организма, которая обладает свойствами, промежуточными между свойствами внешней и внутренней сред (Уголев, 1961; Гальперин, Лазарев, 1986, и др.). Эта среда чрезвычайно важна для поддержания гомеостаза и взаимодействий организма с окружающей средой. Энтеральная среда рассматривается не только как сложная система жидкостей (включая пищеварительные секреты), регулируемых и гомеостатируемых макроорганизмом, но и как среда, в которую поступают продукты жизнедеятельности определенных микроорганизмов (метаболиты в широком смысле слова), а часто и некоторых других организмов, пища и ее компоненты и т. д. Энтеральная среда жизненно важна как для лидирующего макроорганизма, так и для симбионтов, населяющих его желудочно-кишечный тракт. Различные характеристики жидкой фазы энтеральной среды, в том числе потока жидкости в норме и при патологии тонкой кишки, освещены в недавнем специальном обзоре (Weems, 1987).
Наиболее сложным и новым является понятие об эндоэкологии. Оно возникло в результате развития физиологии и биохимии пищеварительного аппарата и представлений об энтеральной среде. Под эндоэкологией понимается совокупность микроорганизмов, населяющих желудочно-кишечный тракт, и энтеральной среды. Возможно, более правильно говорить об энтероэкологии и колонэкологии, так как эндоэкология в целом — более широкое понятие, и у некоторых животных речь идет об экологии, которая формируется в результате симбиоза и взаимодействий не только с организмом хозяина в целом, но и с его различными системами. По всей вероятности, эндоэкология играет важную роль в жизни макроорганизма и в естественных условиях жизненно необходима организмам многоклеточных всех видов, полости желудочно-кишечного тракта которых представляют собой своеобразный внутренний дом.
Формирование эндоэкологии
Внутренняя экология характерна для вида в целом, вместе с тем она индивидуальна. Первоначально в онтогенезе внутренняя экология формируется в до-иммунный период, т. е. в ранний постнатальный период на фоне иммунологической толерантности организма, и затем в период более позднего постнатального развития фиксируется. Аутохтонная (собственная) микрофлора отличается от транзиторной (случайной) иммунологическими взаимоотношениями как с лидирующим хозяином, так и с этой случайной флорой. Доминирующие группы микроорганизмов осуществляют иммунологическую защиту от случайной микрофлоры. Сама аутохтонная микрофлора имеет механизмы, предупреждающие колонизацию занятых ею ниш обитания.
Возможно, незрелорождающиеся млекопитающие, первоначально не обладающие иммунной защитой, наряду с недостатками обладают и определенными преимуществами. К числу последних следует отнести возможность формирования определенного симбиоза бактерий и простейших с макроорганизмом. Вскоре после рождения иммунологические «ворота» закрываются, и сообщество, сформированное в начале жизни, приобретает барьер, включающий иммунные и другие механизмы защиты. Но так как в раннем онтогенезе во многих случаях организм находится в специальных условиях и контактирует с особями своего вида, то происходит в значительной степени селективное заселение потомства микроорганизмами, причем симбионты в большинстве случаев не являются случайными. Существуют сведения, что, например у термитов и ряда других насекомых, самка вводит чистую бактериальную культуру стерильному потомству. Ясно, что в этом случае создаются условия, с одной стороны, для вариации состава симбионтов, а с другой — для поддержания его постоянства на протяжении многих поколений насекомых в зависимости от стабилизирующего или дивергирующего действия естественного отбора.
У млекопитающих заражение микроорганизмами (контаминация) происходит, как правило, при прохождении новорожденного через родовые пути матери и при вскармливании его молоком. Известно, что, как недавно отметил Р. Фуллер (Fuller, 1985), здоровье детей, вскормленных грудью, значительно лучше, чем получающих молоко из специальной посуды. Этот пример важен также как демонстрация того, что для поддержания определенного состава бактериальной флоры необходимо ее поступление извне. (Р.Фуллер справедливо считает основоположником этого направления И. И. Мечникова.) Имеются опасения, что в условиях космического полета у космонавтов может происходить уменьшение как притока бактерий из окружающей среды, так и их разнообразия. В результате этого может иметь место обеднение микрофлоры. Поэтому идея бактериальных добавок к пище человека чрезвычайно важна и плодотворна.