Симбионтное пищеварение и питание
Особое место среди других механизмов переваривания пищи занимает симбионтное пищеварение, т. е. пищеварение за счет микроорганизмов желудочно-кишечного тракта. Оно присуще почти всем многоклеточным организмам и отчетливо проявляется у растительноядных жвачных. Симбионтное пищеварение характерно и для других животных, подобных истинным жвачным, например для верблюда, ламы и др. Этот тип пищеварения широко распространен также у беспозвоночных, например у насекомых. Симбионтное пищеварение подробно охарактеризовано в ряде капитальных обзоров (Prosser, Brown, 1967; Сравнительная физиология…, 1977; Schmidt-Nielsen, 1982; Martin, 1989; Williams, 1989, и др.).
Как правило, пищеварительный тракт макроорганизма заселен бактериями и простейшими, которые частично или полностью снабжают организм хозяина необходимыми органическими веществами, в том числе витаминами, незаменимыми аминокислотами и др. Симбионтами некоторых животных, например моллюсков, актиний, кораллов, могут быть также водоросли — зооксантеллы и зоохлореллы, поставляющие пищевые вещества хозяину. Интересно, что у хищных насекомых симбионты отсутствуют, тогда как у тех, кто потребляет сок растений, симбионтное пищеварение играет весьма важную роль.
Анализ различных форм и модификаций симбионтного пищеварения позволил выделить в нем два фундаментальных биологических механизма: 1) первичные пищевые вещества разрушаются ферментами бактерий и простейших, а образующиеся продукты гидролиза используются преимущественно организмом хозяина; 2) бактерии и простейшие не только разрушают первичные пищевые продукты, но и утилизируют их, тогда как хозяин поглощает вторичную пищу, состоящую из структур симбионтов. Первый механизм точнее было бы назвать симбионтным пищеварением, а второй — симбионтным питанием в сочетании с симбионтным пищеварением. Животные со специализированными симбионтами, способными использовать метан и серу, оказались в начале трофической цепи в биологических изолятах на дне океанов, где наблюдалась высокая вулканическая активность. В этом случае существуют выходы метана или сероводорода, которые служат внешними источниками энергии подобно свету.
Симбионтные взаимодействия широки и разнообразны. Например, приспособление жвачных к использованию грубых растительных кормов во всех случаях связано с действием на эти субстраты симбионтов. Можно не считать преувеличением, что существование таких организмов в основном базируется на использовании симбионтных процессов.
При рассмотрении симбионтных питания и пищеварения взаимодействия бактериальной флоры и организма-хозяина анализируются обычно на примере человека и высших животных, преимущественно жвачных. Однако для понимания механизмов питания и пищеварения в естественных условиях, а также для формирования новых оптимальных искусственных условий целесообразно анализировать весь круг явлений, известных среди организмов. Нутритивные симбиозы известны уже у простейших, в которые вселяются бактерии и некоторые водоросли, обеспечивающие их продуктами фотосинтеза. Среди многоклеточных организмов уже у кишечнополостных обнаруживаются зоохлореллы и зооксантеллы, синтезирующие углеводы и снабжающие организм хозяина дополнительным кислородом.
Организмы, содержащие симбионты, более устойчивы к пищевому голоданию и недостатку кислорода. Можно думать, что во многих случаях быстрота адаптации и, следовательно, возможность изменения трофической ниши связаны не только, а иногда и не столько с изменением пищеварительных характеристик самого хозяина, сколько с изменением ферментных характеристик микрофлоры, населяющей желудочно-кишечный тракт (см. гл. 3). Много ярких примеров этому мы видим у насекомых. Так, питание шерстью или шелком зависит от формирования специфической кишечной флоры и по своему механизму является адаптацией на уровне бактериальной флоры. Следовательно, необходима разгадка того, каким образом организм хозяина культивирует нужный тип микрофлоры и затем передает потомству иногда чистую или почти чистую и хорошо стабилизированную культуру бактерий. Более того, образование экзотических трофических ниш и заполнение трофических пустот также в ряде случаев связаны с приобретением и культивированием соответствующих симбионтов.
Нельзя исключить, что в составе нормальной флоры желудочно-кишечного тракта всегда присутствуют «случайные» загрязняющие бактерии, способные утилизировать и расщеплять нехарактерные для данной популяции пищевые субстраты. Таким путем, вероятно, происходят эволюция питания и приспособление организмов к новым трофическим нишам. Кроме того, у многоклеточных организмов в пределах пищеварительного аппарата могут существовать своеобразные трофические цепи, что обеспечивает многие важнейшие эволюционные и экологические перестройки. Например, термиты, питающиеся преимущественно древесиной, обеспечивают свои потребности в белке за счет включения в кишечную флору азотфиксирующих бактерий. По-видимому, благодаря присутствию в желудочно-кишечном тракте азотфиксирующих бактерий действительно возможны подлинная фиксация атмосферного азота и включение его в биологический цикл, минуя промежуточные звенья растительной трофической цепи. Этот пример является многообещающим и демонстрирует недостаточно изученную, но исключительно важную сторону эволюции процессов питания и пищеварения в животном мире.
Индуцированный аутолиз
Ранее нами было высказано предположение о важной роли так называемого индуцированного аутолиза в ассимиляции пищи. Согласно нашей гипотезе, этот тип пищеварения, при котором объект питания в естественных условиях обеспечивает собственное переваривание и усвоение, является наиболее древним механизмом начальной переработки пищевых веществ у многоклеточных организмов. Индуцированный аутолиз реализуется собственными ферментами пищевого объекта, а пищеварительные ферменты хозяина создают благоприятные условия для их действия. Однако до последнего времени считалось, что аутолиз играет незначительную роль в общем пищеварительном процессе, так как начальные этапы пищеварения осуществляются в основном в полости желудочно-кишечного тракта высших организмов секретируемыми ферментами хозяина, а промежуточные и заключительные — в результате мембранного пищеварения.
Таким образом, было важно установить относительную роль ферментов хозяина и пищевого объекта в начальных этапах гидролиза пищевых веществ при питании в естественных условиях. Особенно трудно было интерпретировать питание хищников, у которых происходит переваривание больших порций мяса, из-за чего отношение поверхность/масса мало и невыгодно для ферментов желудочного сока, действующих на поверхности пищевого объекта.
Индуцированный аутолиз был обнаружен нами около 20 лет назад, но описан лишь в 1984 г. (Уголев, Цветкова, 1984). (Детально этот механизм освещен также в обзорах: Уголев, 1985, 1987а.) При индуцированном аутолизе жертва, или, шире говоря, объект питания, обеспечивает свое собственное переваривание. Так, например, происходит, если удав заглатывает кролика. До последнего времени было неясно, каким образом проглоченная целиком жертва переваривается удавом. Действительно, поверхность контакта жертвы с ферментами желудочного сока хищника сравнительно мала, так как пищевой объект не раздроблен. Оказалось, однако, что раньше, чем ферменты хищника гидролизуют структуры жертвы, начиная с ее поверхности, организм этой жертвы будет аутолизироваться за счет индуцированного аутолиза.
Индуцированный аутолиз был исследован нами в модельных экспериментах, названных «маленький искусственный удав». В прозрачную камеру, заполненную желудочным соком человека, лошади или собаки, помещались «сырая» лягушка и лягушка после недолгой термической обработки. В первые несколько часов гидролиз сухожилий термически обработанной лягушки шел быстрее, чем «сырой», что служило подтверждением общепринятых взглядов. Однако в последующие 2–3 дня «сырая» лягушка полностью растворялась, тогда как структуры термически обработанной лягушки в значительной мере сохранялись. Таким образом, в этих экспериментах наряду с доказательством существования индуцированного аутолиза было продемонстрировано, что нативные белки гидролизуются быстрее денатурированных.
В дальнейшем мы детально исследовали механизм переваривания нативных тканей желудочным соком.
Выяснилось, что суть этого механизма состоит в следующем. Кислый желудочный сок хищника индуцирует самопереваривание жертвы ее же ферментами. Под действием этого сока происходят разрушение лизосом и выход в клетку многочисленных лизосомальных гидролаз, разрушающих все структуры клетки при pH 3.5–5.5.
Итак, организм-ассимилятор индуцирует расщепление структур пищевого объекта ферментами последнего, активируя их и создавая оптимальные условия среды, в том числе pH. В соответствии с классическими представлениями о механизмах переваривания пищевого объекта, ферменты пищеварительных соков осуществляют свой эффект только поверхностно. Скорость диффузии гидролаз внутрь пищевого объекта даже при низком диффузионном сопротивлении мембраны лимитирована их сравнительно большой молекулярной массой, тогда как скорость диффузии протона примерно на 3–4 порядка больше. При выходе гидролаз из лизосом под влиянием сдвига pH возникает множество центров гидролиза в каждой клетке (рис. 1.4), что создает практически тотальное расщепление ткани. Следует добавить, что в кислых секретах организма-ассимилятора содержатся главным образом протеазы, тогда как ферментный спектр лизосом практически универсален. Однако в ассимилируемых объектах имеются также структуры (например, белки соединительной ткани, жировые депо, в тканях растений — полисахаридные депо), лишенные лизосом и не подвергающиеся индуцированному аутолизу. Следовательно, можно предположить, что ферменты пищеварительных соков (гидролазы, расщепляющие белки, жиры и углеводы) особенно важны для утилизации указанных структур с высокой скоростью.
Рис. 1.4. Упрощенная концептуальная схема внутриклеточный процессов при индуцированном аутолизе (по: Уголев, 1985).
А — клетка с субклеточными органеллами (светлые кружки — лизосомы); Б — проникновение индукторов (Н+, детергентов и т. д.) в клетку; В, Г — выход лизосомальных ферментов в цитоплазму при действии индукторов и лизис клеточных структур (при подходящих условиях).
По-видимому, индуцированный аутолиз существует не только у плотоядных, но и у растительноядных животных. Например, при использовании травоядными свежих кормов расщепление пищи отчасти обусловлено ферментами, находящимися в клетках растений. Некоторое значение в гидролизе пищевых веществ в желудочно-кишечном тракте новорожденных детей могут иметь гидролитические ферменты материнского молока. Наконец, «созревание» мяса, по-видимому, есть не что иное, как частичный аутолиз, который можно рассматривать как некоторый элемент пищеварительного процесса.
Примеры индуцированного аутолиза обнаружены также среди низших животных, в частности у простейших и плоских червей. После захвата пищевого объекта происходит образование новых вакуолей, или везикул, обладающих кислой реакцией. Хотя кислая фаза переваривания в этих случаях была интерпретирована как выполняющая лишь денатурацию структур пищевого материала, представленные данные свидетельствуют о возможности значительного расщепления пищи в результате индуцированного аутолиза. В соответствии с этой гипотезой кислая среда пищеварительных везикул приводит к активации лизосомальных ферментов двумя путями: 1) увеличивая проницаемость мембран лизосом; 2) создавая адекватные условия для действия лизосомальных ферментов, которые активны в слабокислой среде. Следовательно, возможен не только протеолиз, но и расщепление множества других пищевых веществ.
Можно думать, что представления об индуцированном аутолизе позволяют глубже понять механизмы естественного переваривания пищи, ее легкое усвоение без термической обработки и, наконец, то обстоятельство, что индуцированный аутолиз — это важное и древнее приспособление последовательных партнеров в трофической цепи.
Транспорт
Основные концепции транспорта пищевых веществ через клеточные мембраны, клеточные слои и межклеточные пути охарактеризованы в ряде фундаментальных обзоров (Никольский, 1977; Елецкий, Цибулевский, 1979; Levin, 1979; Crane et al., 1980; Hoshi, Himukai, 1982; Pharmacology…, 1984; Уголев, 1985, 1987a; Мембранный гидролиз…, 1986; Semenza, Corcelli, 1986; Alpers, 1987; Hopfer, 1987; Shiau, 1987; Molecular basis…, 1988; Evans, Graham, 1989, и др.).
Долгое время доминировало представление об исключительном разнообразии механизмов транспорта у различных организмов. Тем более удивительно, что, как оказалось, у организмов, стоящих на разных уровнях эволюционной лестницы, механизмы трансмембранного и трансцеллюлярного транспорта пищевых веществ идентичны или сходны. Это сходство выражается прежде всего в общих принципах построения и функционирования транспортных систем клеточной мембраны. Среди них общий источник энергии для активного транспорта — АТФ; наличие высокоспецифических связывающих и транспортирующих белков; сопряженность избирательного трансмембранного переноса глюкозы и аминокислот с переносом ионов натрия или протонов; идентичность механизмов действия некоторых активаторов и ингибиторов на транспортные системы далеких друг от друга видов организмов, и т. д. Важно, что у всех групп многоклеточных организмов, и даже у Protozoa и, наконец, в ряде случаев у прокариотов, обнаружена идентичность систем переноса пищевых веществ через мембраны клеток или через клеточные слои (рис. 1.5).
Согласно современным представлениям, существует два типа транспорта — макромолекулярный и микромолекулярный. Под первым подразумевается перенос крупных молекул и надмолекулярных комплексов. Этот тип транспорта в большинстве случаев осуществляется с помощью эндоцитоза и обеспечивает, например, проникновение небольших, но значимых для организма количеств белка через кишечный барьер млекопитающих. Однако основным типом транспорта пищевых веществ у всех организмов, по-видимому, является микромолекулярный, в результате которого через клеточную мембрану переносятся преимущественно мономеры (различные ионы, глюкоза, аминокислоты, жирные кислоты и другие молекулы), а также олигомеры с небольшой молекулярной массой. Например, у высших организмов углеводы транспортируются через плазматическую мембрану кишечных клеток в основном в виде моносахаридов (глюкозы, галактозы, фруктозы и т. д.), белки — в виде аминокислот, жиры — в виде жирных кислот и глицерина.
Рис. 1.5. Схема структурных и функциональных компартментов кишечной слизистой (по: Смирнов, Уголев, 1981).
А — Структура компартментов; Б — потоки веществ; В — потоки воды.
Через мембрану клеток вещества проникают за счет пассивного транспорта, облегченной диффузии и активного транспорта. Пассивный транспорт объединяет в себе процессы диффузии и осмоса. Облегченная диффузия осуществляется особыми переносчиками, или транспортерами, — специфическими белковыми молекулами, которые облегчают проникновение субстратов через липопротеиновую мембрану клетки без затраты энергии. Активный транспорт — это процесс проникновения веществ через плазматическую мембрану клетки против электрохимического градиента. В этом процессе, требующем затраты энергии, участвуют специальные транспортные системы, которые функционируют по типу мобильных переносчиков, конформационных переносчиков или, что встречается наиболее часто, каналов (обзор: Hopfer, 1987, и др.).
Имеются серьезные основания полагать, что существует особый транспортный механизм, названный нами «подвижная адсорбция», который был рассмотрен в нескольких наших работах, начиная с 1967 г. (Уголев, 1967). Такая адсорбция осуществляется благодаря движению молекул по активным поверхностям и центрам по градиенту концентраций, который может создаваться различными путями: за счет транспортных систем, локализованных в определенных точках и активно переносящих вещество из одного компартмента в другой, или с помощью ферментных систем, трансформирующих это вещество. Мы полагаем, что такой механизм можно было бы назвать транссорбцией.
Все перечисленные механизмы справедливы для организмов, стоящих на разных уровнях развития: от примитивных прокариотов до высших эукариотов.
1.4. Универсальность строительных и функциональных блоков на различных уровнях организации биологических систем как условие динамического и трофического единства биосферы
Длительное существование биосферы как динамической системы невозможно без циркуляции веществ и энергии, включающей в себя в качестве обязательного компонента трофические цепи. Существование последних и перенос материалов, синтезированных первичными продуцентами, возможны лишь благодаря общности основных ассимиляторных механизмов. Их сущность стала понятна сравнительно недавно в результате достижений новой биологии, хотя важность и грандиозность процессов циркуляции веществ в биосфере были очевидны уже давно. Как бы ни были сложны и разнообразны трофические цепи, переход от одного звена к другому сводится к разборке, т. е. деполимеризации, материалов предшествующего звена на некоторые простые элементы, а затем к их реконструкции (ресинтезу) в структуры собственного организма.
Однако сейчас становится все более ясным, что перенос биомассы вдоль трофических цепей возможен не только благодаря идентичности во всей биосфере строительных блоков (моносахаридов, аминокислот и т. д.), но и благодаря единству биосферы на уровне универсальных функциональных блоков. Важность этих двух принципов настолько велика для понимания феномена жизни в целой и ее составляющих, что необходимо сказать о них несколько слов.
Поразительное разнообразие живых систем сочетается с единством всех известных до настоящего времени организмов на уровне строительных блоков, из которых они сложены. В биологии прошлого века такое единство рассматривалось на уровне клеточных структур организмов. Однако существует большое сходство живых систем и на уровне субклеточных органелл. Успехи современных химии и молекулярной биологии позволили утверждать, что единство таких систем проявляется также на молекулярном уровне — на уровне строительных и на уровне функциональных блоков. Под строительными блоками, как отмечено выше, подразумеваются такие простые органические молекулы, как аминокислоты, моносахариды и т. д., из которых состоят макромолекулы. Под функциональными блоками имеются в виду макромолекулы и макромолекулярные комплексы, выполняющие элементарные физиологические функции.
Действительно, свойства ассимиляторных механизмов на макромолекулярном уровне поражают своим единообразием. Так, например, пищеварительные гидролазы чрезвычайно близки по своей молекулярной структуре (включая организацию активного каталитического центра) не только у Metazoa и Protozoa, но и у эукариотов и прокариотов. Близки или идентичны принципы построения трансмембранного переноса пищевых веществ у представителей всех царств живого. При этом механизмы, обнаруженные у наиболее примитивных форм, так же совершенны, как у растений и высших животных.
Интересно, что сложная система хранения, передачи и трансформации информации в конечном итоге связана с изменениями комбинаций лишь 4 азотистых оснований в нуклеиновых кислотах. Далее, все клеточные структуры и функции, осуществляемые клетками, обусловлены комбинациями 20 аминокислот. Можно было бы предположить, что указанное количество аминокислот возникло на ранних стадиях биогенеза и удерживалось до настоящего времени благодаря стабилизирующему действию естественного отбора. Однако подобная точка зрения должна быть отброшена, так как экспериментальная проверка условий начального биогенеза показала, что первоначально существовало более 100 аминокислот и в ходе эволюции сохранились лишь некоторые из них. Почему это произошло? Точного ответа пока дать нельзя. Ясно лишь, что трофические цепи возможны при условии, если составные части всех элементов цепи будут хорошо скоординированы. Недостаток каких-либо незаменимых аминокислот должен приводить к гибели (быстрой или медленной) популяций, составляющих следующее звено трофической цепи. Лишь достаточно хорошее соответствие строительных блоков во всех звеньях цепи может обеспечить эффективное функционирование трофических цепей в биосфере. По всей вероятности, те первичные организмы, которые частично или полностью были сконструированы из других строительных блоков, не могли эффективно включаться в доминирующие трофические цепи биосферы и элиминировались в результате естественного отбора. Возможно, по этой же причине не развились и погибли системы, состоящие из правовращающих аминокислот.
Однако «трофологическая» гипотеза организации биологических систем и биосферы в целом требует не только единства на уровне строительных блоков, но и единства всех типов химических связей в полимерах. Единство структуры пищевых полимеров явилось основой сходства, а иногда и идентичности механизмов, реализующих их ассимиляцию у различных типов живых систем. (Подробно концепция универсальных функциональных блоков охарактеризована нами в обзорах: Уголев, 1983, 1985, 1987а, 1989, 1990, а ее клинические аспекты в работе: Ивашкин и др., 1990).
1.5. Популяционные, экологические и эволюционные проблемы трофологии. Биосфера как трофосфера
С деятельностью живых систем связана та часть поверхности Земли, которая объединена под названием биосферы. Биосфера, являющаяся самой крупной экосистемой, представляет собой открытую систему, т. е. получает и отдает энергию. Поток энергии направлен в одну сторону, причем часть поступающей солнечной энергии трансформируется в органическое вещество, а большая часть деградирует. Энергия может накапливаться, а затем снова освобождаться и экспортироваться. В отличие от энергии пищевые вещества, в том числе витальные биогенные элементы (углерод, азот, фосфор и т. д.) и вода, используются многократно (обзор: Odum, 1986).
Ежегодно фотосинтезирующие организмы продуцируют до 1017 т (около 100 млрд. т) органического вещества. За это же время весьма значительное количество вещества разрушается и превращается в углекислый газ и воду в результате дыхания растений (Vallentyne, 1962). Предполагается, что преобладание органического синтеза над дыханием явилось главной причиной уменьшения содержания углекислого газа в атмосфере и накопления в ней кислорода, уровень которого в настоящее время достаточно высок. Именно это и способствовало эволюции и развитию высших форм жизни на Земле (обзор: Odum, 1986).
Рис. 1.6. Модель потока энергии, показывающая связь между пастбищной и детритной трофическим цепями (по: Odum, 1986).
I — пастбищная трофическая цепь; II — детритная трофическая цепь.
А — растительноядные, Б — хищные животные.
1 — солнечный свет; 2 — растения; 3 — потребители детрита; 4 — хищники.
Перенос энергии пищи от ее источника — аутотрофов (растений) через ряд организмов путем поедания одних организмов другими составляет трофическую цепь. При каждом очередном переносе до 80–90 % потенциальной энергии переходит в тепло. В связи с этим чем короче трофическая цепь, тем большее количество энергии доступно для популяции.
Формально трофические цепи можно разделить на пастбищную, начинающуюся от растений и идущую к растительноядным животным, и детритную, которая идет от мертвого органического вещества к микроорганизмам, а затем к детрофагам и хищникам (рис. 1.6). Важно, что трофические цепи не изолированы, а тесно переплетены, образуя так называемые трофические сети.
Рис. 1.7. Упрощенная схема потока энергии на трех трофических уровнях в линейной трофической цепи (по: Odum, 1986).
I, II, III — трофические уровни. I — общее поступление энергии; LA — свет, поглощаемый растительным покровом; PG — валовая первичная продукция; А — общая ассимиляция; PN — чистая первичная продукция; P — вторичная продукция консументов; NU — неиспользуемая (накапливаемая или экспортируемая) энергия; R — дыхание. Цифры внизу — порядок величины потерь энергии при каждом переносе, начиная с поступление солнечного излучение в количестве 3000 ккал. м-2?сут-1
Считается, что организмы, получающие энергию от Солнца через одно и то же количество этапов, принадлежат к одному уровню. При этом популяция может занимать не только один, а несколько уровней в зависимости от используемых источников энергии. Условно можно выделить 4 трофических уровня: 1) про дуценты (зеленые растения); 2) первичные консументы (травоядные); 3) вторичные консументы (первичные хищники, поедающие травоядных); 4) третичные консументы (вторичные хищники). Принято, что человек чаще всего одновременно является первичным и вторичным консументом, так как в его диету, как правило, входит пища как растительного, так и животного происхождения. В этом случае поток энергии разделяется между этими трофическими уровнями в соответствии с долями растительной и животной пищи. В превосходном обзоре Ю. Одума (Odum, 1986) представлена упрощенная схема потока энергии на трех уровнях (рис. 1.7). Как можно видеть, поток энергии через трофический уровень соответствует общей ассимиляции (А) на этом уровне, а последняя равна продукции (Р) биомассы плюс дыхание (R). На каждом следующем трофическом уровне поток энергии уменьшается. На первом трофическом уровне поглощается до 50 % падающего света, а в энергию пищи трансформируется только 1 % поглощенной энергии. На двух следующих уровнях вторичная продуктивность составляет лишь 10 % от предыдущей. В целом средняя эффективность переноса энергии между трофическими уровнями составляет 20 % и менее. Существует предположение, что регуляция первичной продукции зависит от числа звеньев в трофической цепи (Smith, 1969).
Что касается трофических цепей, то в большинстве случаев в каждом следующем звене поток доступной энергии уменьшается на один порядок. Равновесие между синтезом и деструкцией веществ — необходимое условие поддержания жизни в планетарном масштабе и существования каждого вида в отдельности.
Живые организмы, представляющие собой активную силу, действующую сегодня, составляют лишь сравнительно небольшую часть биосферы. Поэтому хотя носителями жизни являются отдельные организмы, жизнь, согласно В. И. Вернадскому (1926, 1965, 1980), возможна лишь как планетарное явление, как форма существования биосферы с обязательным для нее круговоротом веществ и потоков энергии, так называемым биотическим круговоротом. Этот круговорот определяется как метаболическими процессами, происходящими в отдельных организмах, так и связями между ними. Связи между различными организмами также в значительной мере являются трофическими.
Биотический круговорот в целом можно рассматривать как трофический процесс, а сами организмы включены в трофические цепи, точнее трофические сети, где каждый вид использует определенные источники питания и вместе с тем сам служит пищевым объектом. Источники питания, количество, свойства и доступность пищи в значительной мере лимитирует распределение и численность любой популяции, а также во многом определяют ее эволюционную судьбу. Следовательно, одним из условий устойчивости биосферы является биотический круговорот, или цикл, в который как важный компонент входят трофические взаимодействия. Последние обеспечивают образование биологической массы, ее миграцию и модификацию, а также постепенную деградацию до неорганических элементов, которые вновь включаются в начальные звенья цикла. Многие неорганические вещества превращаются в органические и трансформируются в метаболических звеньях трофических цепей, а затем в идеальных случаях возвращаются в метаболические звенья компонентов биотического круговорота. (Закономерности круговорота веществ и энергии в биосфере, проблема трофических связей и их роли в биосфере, ее эволюция и ряд других вопросов детально рассмотрены в ряде обобщающих сводок: Вернадский, 1926, 1965, 1980; Биосфера, 1972; Будыко, 1984; Уголев, 1985, 1986а, 1987а; Аксенов, 1986; Добровольский, 1986; Соколов, 1986; Allen, Nelson, 1986; Odum, 1986; Лапо, 1987; Green et al., 1990, и др.)
Таким образом, трофические связи являются обязательным элементом жизни как биосферного явления, а проблема происхождения жизни на Земле в конечном итоге сводится к вопросу об образовании первичной биосферы с ее первичными трофическими взаимоотношениями (см. гл. 9). Этот вопрос был поставлен еще В. И. Вернадским, как и вопрос о трофических связях в современной биосфере.
Понимание биосферы как трофосферы (Уголев, 1986а), состоящей из различных трофоценозов с их цепными и разветвленными связями, обеспечивающих циркуляцию веществ и энергии, позволяет решать проблемы охраны окружающей среды и поддерживать экологическое равновесие на основе анализа трофических соотношений и их сохранения. В некоторых случаях при нарушении трофических цепей возможно их восстановление за счет включения недостающих звеньев.
Следует обратить внимание на несколько аксиоматических положений: 1) в основе энергетики жизни и образования органических веществ лежат преимущественно процессы фотосинтеза, которые осуществляются за счет солнечной энергии; 2) основная часть энергии расходуется в результате метаболизма самими аутотрофными организмами; 3) лишь небольшая часть аккумулированного материала (примерно 10 %) переходит в следующее звено трофической цепи, и т. д. Следовательно, как уже отмечено выше, лишь небольшая часть энергии, накопленной в органических веществах, передается по трофическим цепям. Однако именно эта неметаболизированная часть и является самой важной, так как она определяет биологический состав биосферы, ее единство, гомеостаз и многие другие важнейшие свойства (обзор: Odum, 1986).
В классическом труде «Биосфера», опубликованном в 1926 г., В. И. Вернадский писал, что на земной поверхности нет химической силы, более постоянно действующей, а потому и более могущественной по своим конечным последствиям, чем живые организмы, взятые в целом. Следует отметить, что живые организмы необходимо рассматривать не как сумму автономных сил (в особенности трофических), а как системы, в которых активность организмов и популяций включена в определенные взаимодействующие и взаимосвязанные звенья.
Когда В. И. Вернадский создавал теорию биосферы, концепция трофических цепей базировалась на упрощенных и неполных представлениях, не позволяющих дать систематическое описание механизмов ассимиляции пищи, тем более в рамках единой науки — трофологии. Благодаря достижениям биологии последних лет представляется возможность охарактеризовать все процессы, происходящие в трофических цепях, на основании трех основных типов пищеварения, а также нескольких типов транспорта. Эти достижения позволяют также показать, что место вида в трофической цепи определяет его существование.
В сущности биология и физиология организмов тесно связаны с видовыми особенностями питания и добывания пищи. Экологи, и в частности Ю. Одум (Odum, 1986), подчеркивают, что главная побудительная причина активности всех животных — поиски нужной пищи в достаточном количестве. Твердо установлено, что структура и деятельность сообществ в значительной мере зависят от наличия пищи, а видовые и индивидуальные особенности многих процессов связаны с местом вида в трофической цепи и способом добывания пищи.
Парадоксальной на первый взгляд кажется другая связь: любой организм (точнее, вид) приспосабливается к тому, чтобы самому служить источником пищи (Уголев, 1980, 1986а). Для этого организм должен обладать такими свойствами, как определенная фагичность, т. е. доступность для другого организма в качестве источника пищи, а также трофичность, т. е. способность быть ассимилированным другим организмом. Некоторые рыбы, насекомые и растения, будучи вполне фагичными для многих организмов, из-за содержания в них токсических веществ не обладают трофичностью для ряда других живых существ.
На первый взгляд, такое положение трофологии может показаться и телеологичным, и противоречащим действительности, так как существует много данных в пользу того, что организмы вырабатывают специальные способы защиты от потенциального хищника.
Эта сторона проблемы детально освещена в прекрасном обзоре К. Шмидт-Ниельсена (Schmidt-Nielsen, 1982). Однако анализ показывает, что сочетание фагичности и трофичности обеспечивает процветание вида (разумеется, если оно не переходит определенных границ). Отсюда вытекают некоторые неожиданные следствия, в частности взаимная адаптация так называемых трофических партнеров (например, строгая взаимная зависимость свойств и численности популяций хищника и его жертвы). Так, в соответствии с гипотезой естественного равновесия (Hairston et al., 1960), выеданию биомассы травоядными животными препятствуют хищники, ограничивающие численность этих травоядных. Только в таком случае возможна определенная стабильность популяции жертвы за счет того, что хищники будут питаться преимущественно ее больными, дефектными и стареющими членами. Совершенствование же жертвы может привести хищника к гибели от голода и вследствие этого к ухудшению популяции жертвы из-за отсутствия контроля со стороны хищника. Анализ свойств этой пары демонстрирует важную роль источника пищи и наличие обратной связи. Это было продемонстрировано в невольных экспериментах человека, когда, например, в каком-либо регионе полностью уничтожалось поголовье хищника, а в другом происходила искусственная интродукция хищника с помощью специальных мероприятий по охране этих животных.
Взаимное приспособление в последовательных парах хищник-жертва можно проиллюстрировать некоторыми примерами, поражающими сложностью и точностью адаптаций. В частности, Т. Торнтон охарактеризовал способ, каким хищники оберегают вид, которым они питаются. Морские звезды и офиуры имеют период физиологического голодания в 1–2 месяца, приуроченный к моменту оседания личинок пластиножаберных моллюсков — одного из основных пищевых объектов названных хищников. Личинки очень малы, и популяцию моллюсков морские звезды и офиуры могли бы истребить чрезвычайно быстро, но этого не происходит, так как хищники «теряют аппетит». Когда же за время голодания хищников масса личинок увеличивается на 2–3 порядка, у звезд и офиур наступает пора питания. Так с помощью периодического голодания хищники сохраняют источник своего питания (по: Уголев, 1980).
Примером взаимных адаптаций может служить эволюция взаимоотношений паразит-хозяин, при которой происходят уменьшение вредных для хозяина последствий паразитизма или инфекционного воздействия и переход к нейтральным или часто симбионтным взаимоотношениям.
Таким образом, необходимым условием процветания вида является его положение в трофической цепи. Это положение обеспечивается эффективностью взаимодействий не только с предшествующими, но и с последующими членами цепи. Другими словами, существенную роль играет не только источник питания и его эффективное поглощение, но и поедаемость данного члена цепи. В сущности механизмы и закономерности трофических взаимодействий являются одной из самых важных проблем трофологии.
В последние десятилетия накопились серьезные основания для утверждения, что в биоценозах представители различных групп организмов, в том числе далеких таксонов и даже различных царств, взаимодействуют не только с помощью массообмена, но и с помощью химических посредников. Примеры таких взаимодействий представлены в ряде блестящих обзоров (Rice, 1978; Сравнительная физиология…, 1978; Schmidt-Nielsen, 1982; Odum, 1986, и др.).
Регулятор