Стероидогенез в коре надпочечников
Надпочечники секретируют кортикостероиды,являющиеся производными циклопентанопергидрофенантрена (в основе их химической структуры лежит стероидное кольцо из 17 атомов углерода) (рис. 1).
андростендион дегидроэпиандростерона сульфат
Рис. 1. Структура основных гормонов коры надпочечника
К настоящему времени известно около 100 соединений, но лишь немногие из них являются биологически активными соединениями, которые разделяются на четыре группы: глюкокортикоиды, минералокортикоиды, андрогены и эстрогены.
Исходным продуктом синтеза кортикостероидов является холестерин. Большая часть холестерина (80-90%) связана с жирными кислотами и только 10% приходится на свободный холестерин, который в надпочечниках содержится главным образом в эндоплазматических мембранах и митохондриях, а эфиры холестерина сосредоточены в липидных каплях цитоплазмы. Холестерин поступает в надпочечники из плазмы или синтезируется из ацетил-КоА.
Пополнение запасов холестерина находится под контролем АКТГ, под действием которого ускоряется поступление свободного холестерина из плазмы, усиливается внутриклеточный синтез холестерина de novo и стимулируется внутриклеточный гидролиз эфиров холестерина в самих надпочечниках. АКТГ регулирует скорость стероидогенеза в надпочечниках, изменяя метаболизм холестерина и его перераспределение как внутри клетки, так и в митохондриях. Внеклеточные липопротеиды являются важным регулятором синтеза холестерина в надпочечниках, и при достаточном количестве внеклеточного холестерина наблюдается угнетение внутриклеточного его синтеза.
Процессы стероидогенеза обеспечивают ферменты, локализованные в митохондриях и гладкой эндоплазматической сети. Биосинтез кортикостероидов начинается в митохондриях, где от поступающего холестерина под влиянием P450SCC (20,22 десмолазы) происходит отщепление боковой цепи холестерина и образование прегненолона, который является предшественником для большинства кортикостероидов, секретирующихся в надпочечниках человека (рис. 2).
Рис. 2. Стероидогенез в коре надпочечников.
Главные продукты стероидогенеза выделены жирным шрифтом. Первостепенные метаболические пути показаны сплошными толстыми стрелками, второстепенные - сплошными тонкими стрелками. Действие гормонов обозначено пунктирными стрелками. P450SCC - 20,22-десмолаза, Р450с17- 17(3-гидро-ксилаза, 3$-HSD - 11$-гидроксистероиддегидрогеназа, Р450с21- 21-гидроксилаза, Р450с11- 11$-гидроксилаза, Р450с18- 18-гидроксилаза, Р450с19- ароматаза, 17$-HSD- 17$-гидро-ксистероиддегидрогеназа
Глюкокортикоиды образуются в гладкой эндоплазматической сети из прегненолона при участии фермента Р450с17 через промежуточные продукты - 17 "-гидроксипрегненолон и 17-гидроксипрогестерон. В результате последующей реакции при участии Р450с21 происходит гидро-ксилирование в 21-м положении с образованием 11-дезоксикортизола, который в митохондриях подвергается дополнительному гидроксилированию в 11-м положении при участии Р450с11, и в результате двух реакций гидроксилирования образуется кортизол, который, как и дегидроэ-пиандростерон, представлен в пучковой и частично в сетчатой зонах коры надпочечников. В этих зонах отсутствует фермент P450aldo (альдос-теронсинтаза, Р450сто), необходимый для синтеза альдостерона.
Минералокортикоиды (альдостерон) образуются в клетках клубочковой зоны, функции которых лишь частично находятся под контролем
АКТГ. Все три последних этапа синтеза альдостерона, а именно образование кортикостерона из 11-дезоксикортикостерона, 18-гидроксикорти-костерона и альдостерона, находятся под контролем фермента P450aldo.
Образование андрогенов в коре надпочечников осуществляется в её сетчатом слое и отчасти в пучковой зоне конверсией 17 "-гидроксипрегненолона в С-19 стероиды, к которым относится дегидроэпиандростерон и дегидро-эпиандростерон сульфат. Андростендион образуется из 17"-гидроксипрогестерона при участии фермента 17,20 десмолазы. Андростендион может конвертироваться в тестостерон. У мужчин тестостерон надпочечникового происхождения является лишь небольшой частью от общего уровня тестостерона, циркулирующего в крови и экскретируемого с мочой.
Характер стероидогенеза определяется ферментными системами, активность которых зависит от АКТГ. Комплексирование АКТГ с рецептором инициирует серию последовательных реакций и активирование цАМФ-зависимой протеинкиназы, которая в свою очередь приводит к фосфорилированию белков рибосом, образованию и повышению активности ферментов (холестеринэстеразы, P450SCC и др.), определяющих скорость стероидогенеза.
В тканях надпочечника под влиянием АКТГ отмечается повышение синтеза ДНК и РНК, увеличиваются размеры клеток, объем ядер, гипертрофируется ядрышко и пластинчатый комплекс, возрастает число липидных клеток в цитоплазме митохондрий, увеличивается гладкая эндоплазматическая сеть.
ГОРМОНЫ КОРЫ НАДПОЧЕЧНИКОВ
Глюкокортикоиды
Самым биологически активным глюкокортикоидом, секретируемым надпочечниками, является кортизол (на его долю приходится 80%). Остальные 20% в порядке убывания активности составляют кортизон, кортикостерон, 11-дезоксикортизол и 11-дезоксикортикостерон. В сутки надпочечниками секретируется 15-30 мг кортизола.
Более 90 % кортизола циркулирует в крови связанным с белками - преимущественно с "-глобулином (кортикоидсвязывающим глобулином или транскортином)и небольшая часть связана с альбуминами, обладающими к нему низкой аффинностью по сравнению с транскортином. Около 8% кортизола плазмы является свободной фракцией, осуществляющей биологический эффект.
Дефицит инсулина и эстрогены повышают содержание транскортина, что приводит к увеличению кортизола, связанного с белками, в результате чего увеличивается общая концентрация кортизола в плазме. Однако уровень свободного кортизола, по-видимому, остается нормальным, а признаки и симптомы избытка глюкокортикоидов отсутствуют.
Большинство синтетических аналогов глюкокортикоидов связываются с транскортином менее эффективно (примерно 70% связывания). Это может объяснить способность некоторых из них уже в низких дозах вызывать побочные эффекты.
Заболевания печени и почек, а также длительный приём глюкокортикоидов сопровождаются снижением содержания транскортина и уменьшением фракции кортизола, связанного с этим белком, что приводит к клиническим признакам избытка глюкокортикоидов.
Время циркуляциикортизола определяется прочностью связывания с транскортином (период полураспада кортизола составляет 80-120 мин, кортикостерона - менее 60 мин).
Экскреция.Основным местом обмена кортизола является печень, но почки, кишечник и легкие также принимают участие в обмене корти-костероидов. В печени под влиянием ферментов 5$- и 5"-редуктаз происходит удаление кетоновой группы в кольце А и присоединение 4 атомов водорода с превращением кортизола в тетрагидрокортизол и окисление гидроксильной группы у С11 в кетоновую группу с превращением в тетрагидрокортизон. Эти метаболиты образуют парные соединения с глюкуроновой и серной кислотами, а так как эфиры этих соединений (глюкорониды) хорошо растворяются и плохо связываются с белками крови, они экскретируются с мочой.
Свободный кортизол фильтруется в клубочках почек, однако 80-90% его реабсорбируется в канальцах и лишь незначительная часть экскретируется с мочой в течение суток. Из выделенных с мочой продуктов метаболизма кортизола тетра-гидропроизводные составляют 50-60%, кортол и кортолон - 25-35%, 17$-кетостероиды - 5-8% и 1-3% составляет неизмененный гормон.
Конъюгированные формы глюкокортикоидов секретируются с жёлчью в ЖКТ, из них 20% теряется с калом, 80% всасывается в кишечнике.
Функцииглюкокортикоидов разнообразны - от регуляции метаболизма до модификации иммунологического и воспалительного ответов.
Углеводный обмен. Глюкокортикоиды повышают концентрацию глюкозы в крови за счет увеличения скорости глюконеогенеза в печени (влияние на синтез ключевых ферментов), снижения утилизации глюкозы на периферии (периферический антагонизм действию инсулина), стимуляции освобождения аминокислот (субстратов глюконеогенеза) в мышцах и тем самым усиления неоглюкогенеза.
Белковый обмен. Глюкокортикоиды являются катаболическими гормонами (увеличивают распад белка и тормозят его синтез).
Липидный обмен. Липолиз усиливается в области верхних и нижних конечностей, липогенез - в других частях тела (туловище и лицо). Эти дифференциальные эффекты придают больным (например, при синдроме Иценко-Кушинга) характерный внешний вид.
Действие глюкокортикоидов на обмен кальция выражается в негативном балансе из-за уменьшения всасывания кальция и усиления его выделения, так как подавляется активность витамина D.
Иммунная система. В высоких дозах глюкокортикоиды выступают как иммунодепрессанты (применяют для предупреждения отторжения трансплантированных органов) за счет подавления активности нейтро-филов и моноцитов, способности вызывать лимфопению и депрессию клеточных иммунологических реакций.
Воспаление. Глюкокортикоиды имеют выраженный противовоспалительный эффект - играют большую роль в стабилизации клеточных мембран и органелл. В значительной степени противовоспалительные и антитоксические эффекты объясняются стабилизацией лизосомальных мембран, причем предотвращается выделение ферментов, повреждающих клетки. Благодаря снижению проницаемости капиллярного эндотелия улучшается микроциркуляция и уменьшается экссудация лейкоцитов и тучных клеток. Универсальным механизмом противовоспалительной и антидеструктивной активности глюкокортикоидов является подавление транскрипции генов ферментов, участвующих в образовании липидных медиаторов и влияние на метаболизм воспалительных медиаторов.
Синтез коллагена. Глюкокортикоиды при длительном применении ингибируют синтетическую активность фибробластов и остеобластов, в результате развиваются истончение кожи и остеопороз.
Скелетные мышцы. Длительное применение глюкокортикоидов поддерживает катаболизм мышц, что приводит к их атрофии и мышечной слабости.
Рецептор глюкокортикоидов(ген GCCR, 138040, 5q31-q32) - фактор транскрипции, полипептид из семейства онкогенов erb-A. По аутосомно-доминантному типу наследуется несколько мутаций, приводящих к развитию нечувствительности мишеней к глюкокортикоидам.
Основной регулятор синтезаглюкокортикоидов - АКТГ,который синтезируется и накапливается в клетках передней доли гипофиза. Секреция АКТГ и родственных пептидов контролируется кортикотропин-рилизинг-гормоном (КРГ), секретируемым в срединном возвышении гипоталамуса. КРГ через портальный кровоток поступает в переднюю долю гипофиза, где вызывает в свою очередь секрецию АКТГ.
Также, к факторам, регулирующим секрецию АКТГ, относят концентрацию свободного кортизола в плазме, стресс и цикл сон-бодрствование. Кортизол снижает чувствительность кортикотрофов гипофиза к КРГ и ингибирует его секрецию. Торможение секреции АКТГ, приводящее к атрофии надпочечников при длительной терапии глюкокортико-идами, связано в основном с подавлением секреции КРГ на уровне гипоталамуса, поскольку в этих условиях экзогенное введение КРГ продолжает вызывать подъем уровня АКТГ в плазме.
Для синтеза и секреции кортиколиберина, АКТГ и кортизола характерна выраженная суточная периодичность(т.н. циркадианный ритм). Увеличение секреции кортизола наступает после засыпания и достигает максимума при пробуждении.
Минералокортикоиды
Биологически активными минералокортикоидами в порядке убывания активности являются алъдостерон, дезоксикортикостерон, 18-оксикортикостерон и 18-оксидезоксикортикостерон. Основная функцияминералокортикоидов - поддержание баланса электролитов жидкостей организма, осуществляемая посредством, в первую очередь, увеличения реабсорбции ионов натрия в почечных канальцах, что приводит к увеличению содержания воды в организме и повышению АД. Кроме этого, минералокортикоиды увеличивают реабсорбцию хлора и бикарбонатов, а также увеличивают экскрецию ионов калия (приводящее к гипокалиемии) и ионов водорода.
Секретируемый надпочечниками альдостерон с кровотоком достигает почек, где проникает в эпителиальные клетки дистальных отделов канальцев и связывается со специфическим цитоплазматическим рецептором. Альдостеронрецепторный комплекс затем перемещается в ядро и связывается с рецепторами, вызывая стимуляцию мРНК и синтез соответствующего белка (фермента), который и осуществляет повышенное выделение калия и задержку натрия (обмен ионов натрия на калий в дистальных отделах канальцев).
Метаболизм.Альдостерон практически не связывается с белками плазмы крови, по этой причине время его циркуляции в крови (время полужизни) не превышает 15 мин. Альдостерон в печени трансформируется в тетрагидроальдостерон-3-глюкоронид и в этом виде экскретируется почками.
Секреция альдостерона в организме контролируется следующими факторами: 1) активностью ренин-ангиотензинной системы; 2) концентрацией ионов натрия и калия в сыворотке крови; 3) уровнем АКТГ; 4) простагландинами и кинин-калликреиновой системой.
Таблица 1 - факторы, регулирующие секрецию ренина и альдостерона
Стимулирующие | Ингибирующие |
переход из горизонтального положения в вертикальное снижение внутрисосудистого давления и объема вследствие дегидратации, кровотечения, приема диуретиков, гипоальбуминемии стрессовые ситуации, повышение активности симпатической нервной системы прием р-адреностимуляторов (изопреналин, адреналин) ограничение приема натрия стимуляция секреции простагландинов, глюкагона, брадикинина сердечная недостаточность и цирроз печени снижение кровотока в почечной артерии | вазопрессин "-адреностимуляторы $-адреноблокаторы (индерал, обзидан) увеличение потребления натрия с пищей |
Ренин-ангиотензинная система представлена набором компонентов, взаимодействующих в строгой последовательности. Ангиотензиноген, образующийся в печени под влиянием ренина, местом секреции которого является юкстагломерулярный аппарат кортикальных нефро-нов, конвертируется в ангиотензин I. Последний в легких под влиянием «конвертирующих ферментов» (киназы II) превращается в ангиотензин II(биологически активный октапептид), который стимулирует секрецию альдостерона и вызывает сужение артериол. Таким образом, увеличение секреции ренина является необходимым условием для усиления секреции альдостерона.
Считается, что скорость образования ренина зависит от: снижения давления в юкстагломерулярном аппарате почки (барорецепторная гипотеза); состояния симпатической нервной системы (адренергическая гипотеза); снижения концентрации натрия в области плотного пятна-«macula densa» (гипотеза темного пятна). Факторы, регулирующие секрецию ренина представлены в табл. 1.
Ионы калия стимулируют секрецию альдостерона непосредственно в клубочковой зоне коры надпочечника. Имеются многочисленные данные о контроле секреции альдостерона АКТГ. Об этом свидетельствует и тот факт, что суточный ритм секреции альдостерона (максимум высвобождения его в утренние часы) совпадает с ритмом секреции АКТГ.
Уровень альдостерона в плазме изменяется при трансфузии простагландинов; кроме того, ингибитор синтеза простагландинов индометацин прерывает влияние натрия и увеличения внутрисосудистого объема на секрецию альдостерона. Не исключено, что действие осуществляется совместно с кининовой системой на уровне образования ренина или непосредственно альдостерона.
Секреция альдостерона в сутки у практически здоровых лиц при свободной диете и нормальном содержании в ней хлорида натрия (поваренной соли) составляет от 100 до 500 нмоль/сут (30-150 мкг/сут) при концентрации его в сыворотке крови от 15 до 400 нмоль/л (5-15 нг/100 мл).
Рецептор альдостерона(ген MCR, 264350, 4q31.1) - внутриклеточный полипептид с молекулярной массой 107 кД, связывает альдостерон (также кортизол, но не кортизон) и активирует транскрипцию генов. Дефекты рецептора ведут к развитию псевдогипоальдостеронизма (задержка калия, потеря натрия, артериальная гипертензия при нормальной или даже повышенной секреции альдостерона).
Андрогены
В коре надпочечников синтезируются дегидроэпиандростерон и в меньшей степени андростендион. Недостаточность какого-либо фермента стероидогенеза (11-, 17- и 21-гидроксилазы) приводит к повышенной секреции андрогенов и к изменениям наружных гениталий у плода, нарушениям электролитного баланса и, в зависимости от типа ферментативного дефекта и пола плода, к различным нарушениям полового созревания.
Функция андрогенов надпочечников остается во многом неизученной, несомненны анаболическое и гипохолестеринемическое влияние. У мужчин андрогены надпочечников имеют незначительную роль в поддержании общей концентрации андрогенов в плазме.