Уровни регуляция активности ферментов
Аллостерическая регуляция.Во многих строго биосинтетических реакциях основным типом регуляции скорости многоступенчатого ферментативного процесса является ингибирование по принципу обратной связи. Это означает, что конечный продукт биосинтетической цепи подавляет активность фермента, катализирующего первую стадию синтеза,
которая является ключевой для данной цепи реакции. Поскольку конечный продукт структурно отличается от субстрата, он связывается с аллостерическим (некаталитическим) центром молекулы фермента, вызывая ингибирование всей цепи синтетической реакции.
Скорость подобной суммарной последовательности реакций в значительной степени определяется концентрацией конечного продукта Р,накопление которого выше допустимого уровня оказывает мощное ингибирующее действие на первую стадию процесса и соответственно на
фермент E1.
Мед. Эмзимология
Область исследований энзимопатологииявляется теоретической, фундаментальной частью патологии. Она призвана изучать молекулярные основы развития патологического процесса, основанные на данных нарушения механизмов регуляции активности или синтеза индивидуального
фермента или группы ферментов. Обладая высокой каталитической активностью и выраженной органотропностью, ферменты могут быть использованы в качестве самых тонких и избирательных инструментов для
направленного воздействия на патологический процесс. Считают, что развитие болезни чаще всего связано с наследственной недостаточностью или полным отсутствием синтеза одного-единственного фермента в организме больного.Иногда болезни называют также энзимопатиями. Причиной другого наследственного заболевания – фенилкетонурии,сопровождающейся расстройством психической деятельности, является потеря клетками печени способности синтезировать фермент, катализирующий превращение фенилаланина в тирозин. энзимодиагнос-
тика – развивается по двум путям. Один путь – использование ферментов
в качестве избирательных реагентов для открытия и количественного определения нормальных или аномальных химических веществ в сыворотке крови, моче, желудочном соке и др. (например, выявление при помощи ферментов глюкозы, белка или других веществ в моче, в норме не обнаруживаемых). Другой путь – открытие и количественное определение самих
ферментов в биологических жидкостях при патологии. Оказалось, что ряд ферментов появляется в сыворотке крови при распаде клеток (отсюда их название ≪некротические ферменты≫). Для диагностики органических и функциональных поражений органов и тканей широко применяются отдельные ферментные тесты, выгодно отличающиеся от других химических диагностических тестов, используемых в клинике, высокой чувствительностью и специфичностью.
энзимотерапия, т.е. использование ферментов и модуляторов (активаторов и ингибиторов) действия ферментов в качестве лекарственных средств, имеет пока небольшую историю. До сих пор работы в этом направлении почти не выходят за рамки эксперимента. Исключение составляют некоторые протеиназы: пепсин, трипсин, химотрипсин и их смеси (абомин, химопсин), которые применяют для лечения ряда болезней пищеварительного тракта.
Помимо протеиназ, ряд других ферментов, в частности РНКаза, ДНКаза, гиалуронидаза, коллагеназы, эластазы, отдельно или в смеси с протеиназами используются при ожогах, для обработки ран, воспалительных очагов, устранения отеков, гематом, келоидных рубцов, кавернозных процессов при туберкулезе легких и др. Ферменты применяются также для лечения
сердечно-сосудистых заболеваний, растворения сгустков крови.
Витамины, общее понятие.
витамины– это пищевые незаменимые факторы,которые, присутствуя в небольших количествах в пище, обеспечивают
нормальное развитие организма животных и человека и адекватную скорость протекания биохимических и физиологических процессов. Нарушения регуляции процессов обмена и развитие патологии часто связаны с недостаточным поступлением витаминов в организм, полным отсутствием их в потребляемой пище либо нарушениями их всасывания, транспорта или, наконец, изменениями синтеза коферментов с участием витаминов. В результате развиваются авитаминозы – болезни, возникающие при полном отсутствии в пище или полном нарушении усвоения какого-либо витамина. Известны так называемые гиповитамтозы, обусловленные недостаточным поступлением витаминов с пищей или неполным их усвоением. Практически у человека встречаются именно эти последние формы заболевания, т.е.
состояния относительной недостаточности витаминов. В некоторых районах стран Азии, Африки и Южной Америки, где население употребляет однообразную,т преимущественно растительную, пищу, встречаются иногда случаи полного авитаминоза. В литературе описаны также патологические состояния, связанные с поступлением чрезмерно больших количеств витаминов в организм (гипервитаминозы). Эти заболевания встречаются реже,
чем гиповитаминозы, однако описаны случаи гипервитаминозов A, D,
К и др. Введение в организм структурных аналогов витаминов, называемых антивитаминами, приводит к гибели микроорганизмов. Антивитамины обычно блокируют активные центры ферментов, вытесняя из него соответствующее производное витаминов (кофермент), и вызывают конкурентное ингибирование ферментов (см. главу 4). К антивитаминам относят вещества, способные вызывать после введения в организм животных классическую картину гипо- или авитаминоза.
Водорастворимые витамины
Витамин В1 (тиамин; антиневритный)
При отсутствии или недостаточности тиамина развивается тяжелое заболевание – бери-бери Биологическая роль.Экспериментально доказано, что витамин B1 в форме ТПФ является составной часть минимум 5 ферментов, участвующих в промежуточном обмене веществ. ТПФ входит в состав двух сложных
ферментных систем – пируват- и αкетоглутаратдегидрогеназных комплексов, катализирующих окислительное декарбоксилирование пировиноградной и αкетоглутаровой кислот. В составе транскетолазы ТПФ участвует в переносе гликоальдегидного радикала от кетосахаров на Альдосахара. Основное количество его человек получает с растительной пищей. Много витамина B1 содержится в дрожжах, пшеничном хлебе из муки грубого помола, оболочке и зародышах семян хлебных злаков, сое, фасоли, горохе, меньше – в картофеле, моркови, капусте. Из продуктов животного происхождения наиболее богаты витамином B1 печень, почки, мозг. от 1,2 до 2,2 мг.
Витамин В2 (рибофлавин)
Рибофлавин входит в состав флавиновых коферментов, в частности ФМН и ФАД *, являющихся в свою очередь простетическими группами ферментов ряда других сложных белков – флавопротеинов. Некоторые флавопротеины в дополнение к ФМН или ФАД содержат еще прочно связанные неорганические ионы, в частности железо или молибден, наделенные способностью катализировать транспорт электронов. Из пищевых продуктов рибофлавином богаты хлеб (из муки
грубого помола), семена злаков, яйца, молоко, мясо, свежие овощи и др.;
в молоке он содержится в свободном состоянии. 1,7 мг,
Витамин РР (никотиновая кислота)
Никотиновая Никотинамид
Витамин РР входит в состав НАД или НАДФ,
являющихся коферментами большого числа обратимо действующих в окислительно-восстановительных реакциях дегидрогеназ. В процессе биологического окисления НАД и НАДФ выполняют роль промежуточных переносчиков электронов и протонов между окисляемым субстратом и флавиновыми ферментами. основными источниками никотиновой кислоты и ее амида являются рис, хлеб, картофель, мясо, печень, почки, морковь и другие продукты. Суточная потребность для взрослого человека составляет 18 мг.
Витамин В6 (пиридоксин)
коферментные функции выполняют только фосфорилированные производные пиридоксаля и пиридоксамина. Фосфорилирование пиридоксаля и пиридоксамина является ферменативной реакцией, протекающей при участии специфических киназ. Синтез
пиридоксальфосфата, например, катализирует пиридоксалькиназа, которая
наиболее активна в ткани мозга. Эту реакцию можно представить следующим уравнением: Пиридоксаль + АТФ –> Пиридоксальфосфат + АДФ.
для человека служат хлеб, горох,
фасоль, картофель, мясо, почки, печень и др. 2 мг витамина В6.
Водорастворимые витамины
Биотин (витамин Н) катализируют два типа реакций:
1) реакции карбоксилирования (с участием СО2 или НСО3
–), сопряженные с распадом АТФ
RH + HCO3– + АТФ <=> R-COOH + АДФ + Н3РО4;
2) реакции транскарбоксилирования (протекающие без участия АТФ),
при которых субстраты обмениваются карбоксильной группой R1-COOH + R2H <=> R1H + R2-COOH. Богаты этим витамином печень, почки, молоко, желток яйца. В растительных продуктах (картофель, лук, томат, шпинат), 0,25 мг.
Фолиеваякислота
В медицинской практике (в частности, в онкологии) нашли применение
некоторые синтетические аналоги (антагонисты) фолиевой кислоты. Так,4-аминоптерин используется в качестве препарата, тормозящего синтез
нуклеиновых кислот, и рекомендуется в качестве лечебного препарата при
опухолевых поражениях, в частности при острых и хронических формах
лейкозов у детей и взрослых. Богатыми источниками их являются зеленые листья растений и дрожжи. Эти вещества содержатся также в печени, почках, мясе и других продуктах. Многие микроорганизмы кишечника животных и человека
синтезируют фолиевую кислоту. 1-2 мг.
Витамин В12 (кобаламин)
Химические реакции, в которых витамин В12 принимает участие как кофермент, условно делят на 2 группы в соответствии с его химической природой. К первой группе относятся реакции трансметилирования, в которых метилкобаламин выполняет роль промежуточного переносчика метильной группы (реакции синтеза метионина и ацетата). осуществляется исключительно микроорганизмами. мясо, говяжья печень, почки, рыба, молоко, яйца. 3 мкг (0,003 мг).