Аэробное и анаэробно-аэробное энергообеспечение мышечной деятельности, средства и методы повышения их ёмкости и мощности в избранном виде спорта.
В организме постоянно поддерживается энергетический баланс поступления и расхода энергии. Жизнедеятельность организма обеспечивается энергией за счет анаэробного и аэробного катаболизма (процесса расщепления сложных компонентов до простых веществ), поступающих с пищей белков, жиров, углеводов. При окислении выделяется; а) 1г.белка, 4,1 ккал энергии, б) 1г.углеводов, 4,1 ккал, в) 1г.жира 9,3 ккал.
В процессе биологического окисления эта энергия высвобождается и используется, прежде всего, для синтеза АТФ и КрФ (энергопродукция), которая, как говорилось выше, осуществляется 2-я путями;
1.АНАЭРОБНЫМ (за счет АТФ, КрФ и глюкоза),2.АЭРОБНЫМ (за счет окисления углеводов, а затем жиров).
Аэробный путь ресинтеза АТФ (синонимы: тканевое дыхание, аэробное или окислительное фосфорилирование) – это основной, базовый способ образования АТФ, протекающий в митохондриях мышечных клеток. В ходе тканевого дыхания от окисляемого вещества отнмаютсядва атома водорода (2протона и 2 электрона) и по дыхательной цепи передаются на малекулярный кислород – О2, доставляемый кровью мышцы из воздуха, в результате чего возникает вода. За счет энергии, выделяются при образовании воды, происходит синтез АТФ из АДФ и фосфорной кислоты. Обычно на каждую образовавшуюся молекулу воды приходится синтез 3 молекул АТФ.
Скорость аэробного пути ресинтеза АТФ контролируется содержанием в мышечных клетках АДФ, который является активатором ферментов тканевого дыхания. В состоянии покоя, когда в клетках почти нет АДФ, тканевое дыхание протекает с очень низкой скоростью. При мышечной работе за счет интенсивного использования АТФ происходит образование и накопление АДФ. Появившийся избыток АДФ ускоряет тканевое дыхание и оно может достигнуть максимальной интенсивности.
Другим активатором аэробного пути ресинтеза АТФ является СО2. Возникающий при физической работе в избытке углекислый газ активирует дыхательный центр мозга, что в итоге приводит к повышению скорости кровообращения мышц кислородом.
Максимальная мощность. По сравнению с анаэробными путями ресинтеза АТФ тканевое дыхание обладает самой низкой величиной максимальной мощности. Это обусловлено тем, что возможности аэробного процесса ограниченыдоставкой кислорода в митохондрии и их количеством в мышечных клетках. Поэтому за счет аэробного пути ресинтеза АТФ возвожно выполнение физических нагрузок только умеренной мощности.
Время развертывания – 3-4 мин. У хорошо тренированных спортсменок может быть около 1 мин. Такое большое время объясняется тем, что для обеспечения максимальной скорости тканевого дыхания необходима перестройка всех систем организма, участвующих в доставке кислорода в митохондрии мышц.
Время работы с максимальной мощностью составляет десятки мин. Источниками энергии для аэробного ресинтеза АТФ являются углеводы, жиры и аминокислоты, распад которых завершается циклом Крепса. Причем для этой цели используются не только внутримышечные запасы данных веществ, но и углеводы, жиры, кетоновые тела и аминокислоты, доставляемые кровью в мышцы во время физической работы. В связи с этим данный путь ресинтеза АТФ функционирует с максимальной мощностью в течение продолжительного времени. Что является положительным фактором для гимнасток, особенно значительную роль это играет при многоборье. Однако значительным недостатком аэробного образования АТФ считается большое время развертывания (3-4 мин.) и небольшую по абсолютной величине максимальную мощность. Поэтому мышечная деятельность, свойственная худ. Гимнастике, не может быть полностью обеспечена этим путем ресинтеза АТФ и мышцы вынуждены дополнительно включать анаэробные способы образования АТФ, имеющие более короткое время развертывания и большую максимальную млщность.
Под влиянием систематических тренировок, направленных на развитие аэробной работоспособности, в миоцитах возрастает количество митохондрий, увеличивается их размер, в них становится больше ферментов тканевого дыхания. Одновременно происходит совершенствование кислород – транспортной функции: повышается содержание миоглобина в мышечных клетках и гемоглобина в крови, возрастает работоспособность дыхательной и сердечно – сосудистой систем организма гимнасток.
Анаэробные пути ресинтеза АТФ (креатинфосфатный, гликолитический) являются дополнительными способами образования АТФ в тех случаях, когда основной путь получения АТФ – аэробный не может обеспечить мышечную деятельность необходимым количеством энергии. Это бывает на первых мин. любой работы, когда тканевое дыхание еще полностью не развернулось, а также при выполнении физических нагрузок любой мощности.
В мышечных клетках всегда имеется креатинфосфат – соединеие, содержащее фосфатную группу, связанную с остатком креатина макроэргической связью.(15-20 ммоль/кг. В покое).Креатинфосфат обладает большим запасом энергии и высоким средством к АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющиеся в мышечных клетках при физической работе в результате гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина АТФ.При мышечной работе активность креатинкеназы значительно возрастает за счет активирующего действия на нее ионов кальция, концентрация которых в саркоплазме под действием нервного импульса увеличивается почти в 1000 раз. Креатинфосфат, обладая большим запасом химической энергии, является веществом непрочным. От него легко может отщепляться фосфорная кислота, в результате чего происходит циклизация остатка креатина, приводящая к образованию креатина. Образование креатина присходит без участия ферментов, спонтанно. Частично запасы креатинфосфата могут восстанавливаться и при мышечной работе умеренной мощности, при которой за счет тканевого дыхания АТФ синтезируется в таком количестве, которого хватает и на обеспечение сократительной функции миоцитов и на восполнение запасов креатинфосфата реакция может включаться многократно.Образование креатина присходит в печени с использованием 3 аминокислот: глицина, метионина и аргинина. Спортсмены для повышения в мышцах концентрации креатинфосфата используют в качестве пищевых добавок препараты глицина и метионина.
Максимальная мощность – 900-1100 кал./мин кг., что в 3 раза выше соответствующего показателя для аэробного ресинтеза.
Время развертывания – всего 1-2с. Исходных запасов АТФ в мышечных клетках хватает на обеспечение мышечной деятельности как раз в течение 1-2 с., и к моменту их исчерпания креатинфосфатный путь образования АТФ уже функционирует со своей максимальной скоростью.
Время работы с максимальной скоростьювсего лишь 8-10 с., что связанно с небольшими исходными запасами креатинфосфата в мышцах.Главными преимуществами креатинфосфатного пути образования АТФ являются очень малое время развертывания и высокая мощность, что имеет крайне важное значение для скоростно – силовых видов спорта (х. гимнастика). Главным недостатком этого способа синтеза АТФ, существенно ограничивающим его возможности, является короткое время его функционирования. Время поддержания максимальной скорости всего 8-10 с., к концу 30-й с. его скорость снижается вдвое. Анаэробная реакция окажется главным источником энергии для обеспечения кратковременных упражнений максимальной мощности, таких как прыжки, броски и т.д. в худ. гимнастике. Креатинфосфатная реакция может неоднократно включаться во время выполнения физ.нагрузок , что делает возможным быстрое повышение мощности выполняемой работы, развития ускорения во время выполнения соревновательных упражнений. 5-20 ммоль/кг. атную группу, связанную с остатком креатина макроэргической связью.(ских нагрузок любой мощности.ой путь получен
24. Понятие об адаптации, виды и индивидуальные типы адаптации. Физиологические механизмы и стадии адаптации. «Цена адаптации». Адаптация к мышечной работе. Физиолого-биохимические особенности срочной и долговременной адаптации к физическим нагрузкам. Тренировочный эффект (на примере избр. вида спорта).
Физиологическая адаптация – совокупность физиологических реакций, лежащая в основе приспособления организма к изменению окружающих условий и направления на сохранение относительного постоянства его внутренней среды – гомеостаза.
Значение проблемы адаптации в спорте определяется необходимостью приспособления организма спортсмена к нагрузкам в относительно короткое время. Выделяют 2 группы приспособительных изменений в здоровом организме:
1. Физиологические реакции (изменения в привычной зоне колебаний факторов среды).
2. Адаптационные сдвиги (использование физиологических резервов с перестройкой функциональных систем ).
Физиологическую основу этой стадии составляет вновь установившийся уровень функционирования различных органов и систем для поддержания гомеостаза в конкретных условиях деятельности.
Следует иметь в виду, что возникшие в процессе длительных и интенсивных физических нагрузок структурные изменения в миокарде и скелетных мышцах, нарушенный уровень обмена веществ, гормональные и ферментативные перестройки, своеобразно закрепленные механизмы регуляции к исходным значениям, как правило, не возвращаются. За систематические чрезмерные физические нагрузки, а затем за их прекращение организм спортсменов в дальнейшем платит определенную биологическую цену, что может проявляться развитием кардеосклероза, ожирением, снижением резистентности клеток и тканей к различным неблагоприятным воздействиям и повышением уровнем общей заболеваемости.
При адаптации к чрезмерным для данного организма физическим нагрузкам в полной мере реализуется общебиологическая закономерность, которая состоит в том, что все приспособительные реакции организма к необычным факторам среды обладают лишь относительной целесообразностью.
Цена адаптацииможет проявляться в двух различных формах: 1)в прямом изнашивании функциональной системе, на которую при адаптации падает главная нагрузка, 2)в явлениях отрицательной перекрестной адаптации, т.е. в нарушении у адаптированных к определенной физической нагрузке людей других функциональных реакций, не связанных с этой нагрузкой.