Центральная часть слухового анализатора
Анатомия слуховой системы более сложна, чем зрительной (рис. 6.9, 6.10). Первоначально аксоны в составе кохлеарной ветви слухового нерва попадают в кохлеарные ядра продолговатого мозга, где происходит первое переключение информации на нейроны, лежащие в этих ядрах. Аксоны нейронов направляются в ядра верхнего оливарного комплекса, также расположенного в продолговатом мозге.
-' Некоторые нервные волокна от правого и левого кохлеарных ядер конвергируют на одни и те же нейроны оливы. На более высоких уровнях эта конвергенция возрастает, и соответственно усиливается взаимодействие сигналов от обоих ушей. Следующее переключение происходит на уровне среднего мозга в нижнем двухолмии. Аксоны нейронов нижнего двухолмия направляются в медиальные коленчатые тела, нейроны которых посылают информацию в первичную слуховую кору, расположенную на внутренней поверхности Сильвиевой борозды, и в ассоциативную слуховую кору, лежащую
_в верхней части височной доли.
При прямом раздражении слуховой коры электрическим током испытуемые утверждают, что слышат звуки, несмотря на отсутствие внешнего звукового воздействия на их уши. Обычно при подобной стимуляции справа испытуемый слышит звук слева, и наоборот. Иногда звук может слышаться с двух сторон, но никогда участники эксперимента не локализуют его только на стороне воздействия (после стимуляции слева они никогда не гово-
Рис. 6.10. Ствол мозга с указание!^ ложения точек, изображенных на — внутреннее коленчатое тело; 2 двухолмие; 3 — кохлеарные ядра; ние оливы (Линдсей, Норман, 191 |
рят, что звук возник слева; о утверждать, что он возни! или и слева и справа). Таю зом, каждое ухо имеет более центральное представител] противоположной стороне звук, воздействующий на о вызывает более выражен] рвную активность в контрал ном, а не в ипсилатеральнс шарии (Penfild, Rusmussen, М. Розенцвейг электро-гически исследовал отдельн тки слухового пути кошки, от коры мозга по направлен! и подтвердил, что взаимол между обеими сторонами yi ется по мере удаления от кор |
Рис. 6.9. Проводящие пути от уха к слуховой коре. Вид среза мозга сзади. 1 — сигнал от левого уха; 2 — слуховая кора; 3 — внутреннее коленчатое тело; 4 — нижнее двухолмие; 5 — сигнал от правого уха; 6 — кохлеарное ядро; 7 — верхняя олива (Линдсей, Норман, 1974).
Рис. 6.11. Клетки ядра оливы в нормальных условиях имеют входные связи как от правого, так и от левого кохлеарного ядра. Нервные волокна, приходящие из кохлеарного ядра (изображены тонкими черными линиями), оканчиваются на дендритных “полюсах” нейрона (а). Если кохлеарное ядро на одной стороне ствола мозга разрушить, то идущие от него волокна дегенерируют и нейроны в ядре оливы утрачивают почти все свои связи на этой стороне (б); это доказывает, что каждый из двух полюсов клетки получает сигналы от соответствующего уха (Розенц-вейг, 1974).
слеживается вплоть до ядра < этих ядрах анатом У. Стотлер нашел нейроны, к которым идут связ] их ушей (рис. 6.11), однако в кохлеарном ядре признаков бинауралы имодействия обнаружено не было (Розенцвейг, 1974).
В слуховой коре, подобно зрительной, нейроны организованы в виде колонок, специализирующихся по одному признаку. Интеграция результатов обработки в таких колонках происходит, по-видимому, в нейронных сетях.
Рис. 6.12. Различные типы ответов нейрона на звуковые раздражения, вызванные в первичной слуховой коре неанестезированной кошки: А. Возбудительный; Б. Тормозный; В. “Оп”-ответ; Г. “<Ж”-ответ; Д. “Оп”/“О(Т”-ответ (Уайтфилд, 1967). |
Около 40 % нейронов первичной слуховой коры не отвечают на чистые тоны и звуки и реагируют лишь на более сложные стимулы (Whot-field, 1967). Часть нейронов увеличивает частоту разрядов при стимуляции (активационный ответ), часть — понижают (тормозный ответ). Как и в зрительной коре, есть нейроны, отвечающие на включение (“оп”-ответ) или выключение тона (“offV-ответ). Есть и такие, которые изменяют свою активность в обоих случаях (рис. 6.12) либо только при изменении частоты тона.
Восприятие высоты тона
Восприятие высоты тона происходит посредством двух механизмов. Информация о низких тонах передается в мозг в виде импульсов той же частоты, что и частота воспринимаемого звука. Высокие тоны кодируются местом расположения воспринимающей их волосковой клетки. Звуковые колебания вовлекают в колебательный процесс жидкость верхнего и нижнего каналов улитки. Чем выше тон звука, тем меньше колеблющийся столб жидкости и тем ближе к основанию улитки расположено место максимальной амплитуды колебаний. При действии звуков низкой частоты длина колеблющегося столба жидкости увеличивается, и место максимальной амплитуды отдаляется от овального окна в сторону вершины улитки. При действии высоких тонов возбуждаются лишь нейроны, находящиеся недалеко от овального окна, при воздействии низких звуков активируются почти все рецепторы.
В определенном диапазоне частот (до 1000 Гц) могут действовать обе системы кодирования: связанная с точным соответствием частоты звука передаваемой по нерву импульсации и связанная с определением места расположения рецептора и количеством активированных волосковых клеток. Однако у этих систем существуют определенные предпочтения: так, интенсивность звука низкой частоты, по-видимому, кодируется числом возбужденных клеток. Для звуков высокой частоты в этом диапазоне большее значение может иметь частота импульсации.
Локализация источника звука
Наличие двух ушей позволяет человеку точно определять источник звука, но воздействие его на оба уха неодновременно. Звук, источник которого расположен справа от головы, доходит до правого уха примерно на 0,0005 секунды раньше, чем до левого. Если же источник находится спереди или сзади на 5 градусов правее срединной плоскости головы, то звук дойдет до правого уха всего лишь на 0,00004 секунды раньше. Во время Первой мировой войны вопрос о том, возможно ли для человека определить столь малые различия во времени, решался во Франции и Германии в связи с разработкой звуковых локаторов для обнаружения самолетов. Как показали эксперименты, различия во времени порядка 0,0001 секунды действительно позволяют локализовать источник звука, хотя ухо и не воспринимает каждый из звуков отдельно.
М. Розенцвейг, стимулируя одновременно оба уха у кошки, показал, что при чрезвычайно коротком интервале между звуками, при котором, однако, можно раздельно выявить две электрические реакции нейронов, первая из них, вызванная более ранним стимулом, частично тормозила другую. При более коротких интервалах обе электрические реакции сливались в одну, амплитуда которой зависела от первого стимула. Если сначала раздражали одно ухо, более сильная реакция регистрировалась в контралатеральном полушарии мозга, и наоборот. Такая картина сохранялась при уменьшении интервалов примерно до 0,00001 секунды, хотя по мере их сокращения становилось все труднее выявлять различия между реакциями на обеих сторонах
мозга (Розенцвейг, 1974).
Взаимосвязанность слуховых путей объясняется тем, что для анализа источника звука необходимо участие высших мозговых уровней. Для нервных импульсов от одного уха по мере приближения к коре возрастает вероятность встречи с импульсами от другого. В зависимости от условий стимуляции, которые определяются положением головы и источником звука, конвергирующие импульсы усиливают активность одних нейронов и уменьшают деятельность других (рис. 6.13). Неодинаковый характер активности, возникающей при этом в слуховой коре, соответствует различной локализации звуковых стимулов (Розенцвейг, 1974).
Рис. 6.13. Схематическое изображение общих типов взаимосвязей в верхней оливе (В — возбудительное, Т — тормозное взаимодействия). 1 — к высшим центрам; 2 — верхняя олива; 3 — ядро улитки; 4 — спиральный ганглий; 5 — от левого уха; 6 — от правого уха (Линдсей, Норман, 1974). |
Электрическая активность в нервной системе отражает все различия в характере воздействия: временную последовательность стимулов, интервал между ними и их относительную интенсивность на левом и правом ухе.
Различия в интенсивности и времени усиливают друг друга, поскольку ухо на стороне, противоположной источнику звука, получает сигнал не только позднее, но и меньшей интенсивности из-за “экранирующего” влияния головы.
Костная проводимость
Звук воспринимается не только через барабанную перепонку, но и посредством костной проводимости. Когда человек щелкает зубами, звуки передаются через вибрацию костей черепа. Некоторые из этих вибраций попадают непосредственно во внутреннее ухо, минуя среднее. Этот факт используется в диагностике нарушений слуха. Если костная проводимость сохранна, а воздушная утрачена, то можно заключить, что поражено среднее ухо. В тех случаях, когда нет слышимости звуков, проводимых через кости, можно говорить о поражении слухового нерва.
Слух на основе костной проводимости играет важную роль в процессе речи. Колебания голосовых связок не только, производят звуки, которые через воздух достигают уха, но приводят также в состояние вибрации окружающие структуры, в том числе челюсти, и это передается внутреннему уху. В разговоре человек слышит два типа звучания своей речи: один через костную проводимость, другой — через воздушную. Слушатели же воспринимают только звуки, передаваемые воздушным путем, в которых некоторые низкочастотные компоненты колебаний голосовых связок утрачиваются. Это ведет к тому, что человек с трудом узнает свой голос, записанный на магнитофонную ленту (Бекеши, 1974). Корковые концы слухового анализатора локализуются в первой височной и поперечной височной извилинах Гешля.
Вестибулярный аппарат
Полукружные каналы расположены в трех почти взаимно перпендикулярных плоскостях, и каждый из них заканчивается ампулой (рис. 6.15). В костном лабиринте находится повторяющий его форму перепончатый лабиринт который в области преддверия делится на два мешочка — succulus и utnculus (рис. 6.14). Пространство между костью и перепончатым лабиринтом заполнено жидкостью - перилимфой. Жидкость внутри перепончатого лабиринта называется эндолимфой. Сенсорные клетки, похожие по своему строению на волосковые клетки улитки, располагаются в ампулах, в структурах, называемых cristae ampularis (рис. 6.15). Их волоски приходят в движение при колебании жидкости в полукружных каналах.
Рис 6 14 Костный лабиринт внутреннего уха (Carlson, 1992)
Вестибулярная система
Вестибулярная система поставляет в мозг информацию о положении тела в пространстве, а также наличии или отсутствии вращательного движения. Как и улитка, вестибулярный аппарат располагается в костном лабиринте в пирамиде височной кости. Он состоит из преддверия и полукружных каналов (рис. 6.14). Преддверие передает информацию об ориентации головы в пространстве, а полукружные каналы позволяют определять угловое ускорение при вращении головы (находящиеся в них рецепторы не реагируют на равномерное прямолинейное движение). В меньшей степени они могут сигнализировать об изменениях положения головы и равномерном ускорении.
Функция вестибулярной системы заключается в поддержании головы в правильном положении, а также приспособлении движения глаз для удержания изображения на сетчатке при движении головы в момент перемещения тела. Раздражение вестибулярной системы не вызывает какого-либо определенного чувства. Однако низкочастотная стимуляция преддверия может вызвать тошноту (морскую болезнь), а возбуждение полукружных каналов привести к головокружению и ритмическим движениям глаз (нистагм).
Рис. 6.15. Сечение через полукружный канал ( Carlson, 1992)
В мешочках преддверия находится отолитовый аппарат. Он представляет собой скопление волоско-вых клеток — macula. Каждая волос-ковая клетка имеет один подвижный волосок и 60-80 склеенных. Волоски проникают в желеобразную мембрану, покрывающую macula (рис. 6.16). В петлях этой мембраны расположены кристаллы карбоната кальция — отолиты. Они оказывают давление на волоски рецепторных клеток, которое меняется в зависимости от положения головы человека.