Местная аллергия – Феномен Артюса.
Если подкожно вводить в одно и то же место чужеродную сыворотку, то после 6-7 инъекций в этом месте развивается воспалительная реакция вплоть до омертвения тканей. В основе этого феномена лежит образование в околососудистой ткани иммунного комплекса (антиген+антитело ), что приводит к повреждению, тромбозам сосудов и омертвению тканей.
Инфекционная аллергия.
При многих инфекционных заболеваниях развивается повышенная чувствительность к повторному внедрению в организм микробов того же вида. После первого попадания микробов в организме появляются и накапливаются иммунные Т-лимфоциты-киллеры, которые и обеспечивают развитие ГЗТ. Это используется в диагностике путем постановки кожных аллергических проб. Испытуемым накожно или внутрикожно вводят аллергены, полученные из микробов. При положительной пробе через 24-28 часов на коже развиваются покраснение и уплотнение. Следовательно, человек встречался с данным возбудителем и у него образовались Т-лимфоциты-киллеры. Это может быть в 3 случаях:
- обследуемый болен соответствующим инфекционным заболеванием,
2) перенес это заболевание,
3) привит соответствующей вакциной.
Часто положительная аллергическая проба свидетельствует о наличии возбудителя в организме.
Аллергические пробы ставят при многих заболеваниях:
- туберкулёзе (накожная проба Пирке и внутрикожная проба Манту с туберкулином).
- бруцеллёзе (проба с бруцеллином)
- туляремии (проба с тулярином)
- сибирской язве (проба о антраксином).
Контактные дерматиты.
Часто наблюдаются у работников химфармзаводов. На коже рук и других участков тела развивается воспалительная реакция (типа экземы). Аллергены, будучи простыми гаптенами, всасываются кожей, соединяются с тканями, индуцируют появление Т-лимфоцтов-кидлеров, которые и вызывают воспалительную реакцию. Плохо поддаются лечению. Необходимо автоматизировать производство, исключив контакт работника с аллергеном.
Лекция №11
БИОТЕХНОЛОГИЯ
Нет такого экспериментального подхода или исследовательского направления в биотехнологии, которые бы не получили применения в медицине. Вот почему столь многообразны связи между биотехнологией и самой гуманной из всех наук. Здесь мы остановимся лишь на основных моментах.
Антибиотики.
Антибиотики — это специфические продукты жизнедеятельности, обладающие высокой физиологической активностью по отношению к определенным группам микроорганизмов и к злокачественным опухолям, избирательно задерживающих их рост или полностью подавляющих развитие (Н. С. Егоров, 1979). Далеко не все из этих соединений, число которых приближается к 5000, допущены для применения в медицине. К важнейшим антибиотикам терапевтического назначения принадлежат следующие их классы (табл. 2).
Приведенные классы антибиотиков не исчерпывают их многообразия, список их пополняется с каждым годом. Причины неослабевающего внимания к поиску новых антибиотиков, как видно из табл. 10, связаны с токсичностью существующих антибиотиков, аллергическими реакциями, вызываемыми ими, нарастанием устойчивости патогенных микроорганизмов к применяемым препаратам и, помимо этого, с необходимостью изыскания средств борьбы с возбудителями, против которых недостаточно эффективны известные ныне антибиотики. Основные пути поиска включают:
1. Испытание новых продуцентов. Так, с начала 80-х годов исследуют миксобактерии, продуцирующие большое количество антимикробных агентов (Н. Thierbach, N. Reichenbach, 1981).
2. Химическая модификация антибиотиков. Противомикроб-ные макролиды токсичны для человека. Например, гептаен амфо-терицин В, используемый по жизненным показаниям при тяжелых микозах, вызывает необратимые поражения почек. Получены метиловые эфиры амфотерицина, менее токсичные и сохраняющие противогрибковую активность. При модификации пенициллинов и цефалоспоринов используют иммобилизованные ферменты.
Таблица 2. Важнейшие классы антибиотиков терапевтического назначения(по И Г.. Егорову, 1979; Д.Ланчини, Ф Паренти, 1985)
Класс | Типичные антибиотики | Продуценты | На кого действует | Механизм действии | Трудности терапевтического применения |
b-Лактамные | Пенициллины, це-фалоспорины | Грибы родов Реnicillium, Cephalosporum | Грамположитель-ные и грамотрицательные бактерии | Нарушение синтеза клеточной стенки | Аллергические реакции |
Аминогликозидные | Стрептомицин, гентамицин, канамицин, тобрамицин, амикацин | Актиномицеты рода Streptomyces, бактерии родов Micromonospora. Bacillus | В основном грамотрицательные бактерии | Необратимое подавление синтеза белка | Токсическое действие на слуховой нерв и почки |
Тетрациклины | Одноименные антибиотики | Актиномицеты рода Streptomyces | Грамположительные и грамотрицательные бактерии, риккетсии, хламидии, простейшие | Обратимое подавление синтеза белка | Распространение устойчивых штаммов |
Макролиды | Антибактериальные: эритромицин Противогрибковые и антипротозойные: полиены | Актиномицеты рода Streptomyces То же | Грамположительные бактерии Грибы, некоторые простейшие | То же Нарушение плазматической мембраны | Токсичность |
Полипептидные и депсипептидные | Полимиксины, грамицидины, бацитрацины | Различные микро-организмы | В основном грамотрицательные бактерии | Механизм действия различен | Высокая токсичность |
3. Мутасинтез. Применяют мутантные штаммы, у которых блокирован синтез отдельных фрагментов молекулы антибиотика. В среду культивирования вносят аналоги этих фрагментов. Микроорганизм использует эти аналоги для биосинтеза, в результате чего получают модифицированный антибиотик.
4. Клеточная инженерия. Получают гибридные антибиотики, например, с новыми комбинациями агликона и Сахаров.
5. Генетическая инженерия — введение в геном микроорганизма информации о ферменте, необходимом для модификации продуцируемого антибиотика, например его метилирования при помощи метилаз.
Важной задачей является повышение эффективности биосинтеза известных антибиотиков. Значительных результатов удалось добиться за десятилетия селекции штаммов-продуцентов с применением индуцированного мутагенеза и ступенчатого отбора. Например, продуктивность штаммов Penicillium по синтезу пенициллина увеличена в 300—350 раз. Определенные перспективы открываются в связи с возможностью клонирования генов «узких мест» биосинтеза антибиотика или в случае, если все биосинтетические ферменты кодируются единым опероном.
Многообещающим подходом служит инкапсулирование антибиотиков, в частности их включение в лигюсомы, что позволяет прицельно доставлять препарат только к определенным органам и тканям, повышает его эффективность и снижает побочное действие. Этот подход применим и для других лекарственных препаратов. Например, кала-азар, болезнь, вызываемая лейгшма-нией, поддается лечению препаратами сурьмы. Однако лечебная доза этих препаратов токсична для человека. В составе липосом препараты сурьмы избирательно доставляются к органам, пораженным лейшманией, — селезенке и печени.
Вместо антибиотика в организм человека может вводиться его продуцент, антагонист возбудителя заболевания. Этот подход берет начало с работ И. И.Мечникова о подавлении гнилостной микрофлоры в толстом кишечнике человека посредством молочнокислых бактерий. Важную роль в возникновении кариеса зубов, по-видимому, играет обитающая во рту бактерия Streptococcus mutans, которая выделяет кислоты, разрушающие зубную эмаль и дентин. Получен мутант Strept. mutans, который при введении в ротовую полость почти не образует коррозивных кислот, вытесняет дикий патогенный штамм и выделяет летальный для него белковый продукт.
Гормоны.
Биотехнология предоставляет медицине новые пути получения ценных гормональных препаратов. Особенно большие сдвиги произошли в последние годы в направлении синтеза пеп-тидных гормонов.
Раньше гормоны получали из органов и тканей животных и человека (крови доноров, удаленных при операциях органов, трупного материала). Требовалось много материала для получения небольшого количества продукта. Так, человеческий гормон роста (соматотропин) получали из гипофиза человека, каждый гипофиз содержит его не более 4 мг. В то же время для лечения одного ребенка, страдающего карликовостью, требуется около 7 мг соматотропина в неделю; курс лечения должен продолжаться несколько лет. С применением генноинже-нерного штамма Е. coli в настоящее время получают до 100 мг гормона роста на 1 л среды культивирования. Открываются перспективы борьбы не только с карликовостью, но и с низкорос-лостью — более слабой степенью дефицита соматотропина. Соматотропин способствует заживлению ран и ожогов, наряду с каль-цитонином (гормоном щитовидной железы) регулирует обмен Са2+ в костной ткани.
Инсулин, пептидный гормон островков Лангерганса поджелудочной железы, представляет основное средство лечения при сахарном диабете. Эта болезнь вызвана дефицитом инсулина и проявляется повышением уровня глюкозы в крови. До недавнего времени инсулин получали из поджелудочной железы быка и свиньи. Препарат отличался от человеческого инсулина 1—3 аминокислотными заменами, так что возникала угроза аллергических реакций, особенно у детей. Широкомасштабное терапевтическое применение инсулина сдерживалось его высокой стоимостью и ограниченностью ресурсов. Путем химической модификации инсулин из животных удалось сделать неотличимым от человеческого, но это означало дополнительное удорожание продукта.
Компания Eli Lilly с 1982 г. производит генноинженерный инсулин на основе раздельного синтеза Е. coli его А- и В-цепей. Стоимость продукта значительно снизилась, получаемый инсулин идентичен человеческому. С 1980 г. в печати имеются сообщения о клонировании у Е. сой гена проинсулина — предшественника гормона, переходящего в зрелую форму при ограниченном протеолизе.
К лечению диабета приложена также технология инкапсули-рования: клетки поджелудочной железы в капсуле, введенные однократно в организм больного, продуцируют инсулин в течение года.
Компания Integrated Genetics приступила к выпуску фолли-кулостимулирующего и лютенизирующего гормонов. Эти пептиды составлены из двух субъединиц. На повестке дня вопрос о промышленном синтезе олигопептидных гормонов нервной системы — энкефалинов, построенных из 5 аминокислотных остатков, и эндорфинов, аналогов морфина. При рациональном применении эти пептиды снимают болевые ощущения, создают хорошее
настроение, повышают работоспособность, концентрируют внимание, улучшают память, приводят в порядок режим сна и бодрствования. Примером успешного применения методов генетической инженерии может служить синтез р-эндорфина по технологии гибридных белков, описанной выше для другого пептидного гормона, соматостатина.
Значителен вклад биотехнологии и в промышленное производство непептидных гормонов, в первую очередь стероидов. Методы микробиологической трансформации позволили резко сократить число этапов химического синтеза кортизона, гормона надпочечников, применяемого для лечения ревматоидного артрита. При производстве стероидных гормонов широко используют иммобилизованные микробные клетки, например Arthrobacter globiformis, для синтеза преднизолона из гидрокортизона. Имеются разработки по получению гормона щитовидной железы тироксина из микроводорослей.