Влияние вегетативной нервной системы.

1. Парасимпатическая нервная система:

а) перерезка волокон ПСНС, иннервирующих серд­це - «+» хронотропный эффект (устранение тормо­зящего вагусного влияния, центры n.vagus исходно находятся в тонусе);

б) активация ПСНС, иннервирующих сердце - «-» хроно- и батмотропный эффект, вторичный «-» инотропный эффект.

2. Симпатическая нервная система:

а) перерезка волокон СНС - нет изменений в деятельности сердца (симпатические центры, иннервирующие сердце, исходно не обладают спонтанной активностью);

б) активация СНС - «+» хроно-, ино-, батмо- и дромо­тропный эффект.

Рефлекторная регуляция сердечной деятельности.

Особенность:изменение деятельности сердца происхо­дит при воздействии раздражителя на любую рефлексоген­ную зону. Это связано с тем, что сердце, как центральный, наиболее лабильный компонент системы кровообращения, принимает участие при любой срочной адаптации.

Рефлекторная регуляция сердечной деятельности осу­ществляется за счет собственных рефлексов,формируемых с рефлексогенных зон сердечно-сосудистой системы, и сопряженных рефлексов,формирование которых связано с воздействием на другие, не связанные с системой кровооб­ращения рефлексогенные зоны.

1.Основные рефлексогенные зоны сосудистого русла:

1) дуга аорты (барорецепторы);

2) каротидный синус (место разветвления общей сонной артерии на наружную и внутреннюю) (хеморецепторы);

3) устье полых вен (механорецепторы);

4) емкостные кровеносные сосуды (волюморецепторы).

2.Внесосудистые рефлексогенные зоны. Основные рецепторы рефлексогенных зон сердечно­сосудистой системы:

Барорецепторы и волюморецепторы, реагирующие на изменение АД и объема крови (относятся к группе медленно адаптирующихся рецепторов, реагируют на деформацию стенки сосуда, вызванную изменени­ем АД и/или объема крови).

Барорефлексы.Повышение АД приводит к рефлекторному урежению сердечной деятельности, снижению ударного объема (парасимпатическое влияние). Падение давления вызывает рефлекторное увеличение ЧСС и повышение УО (симпатическое влияние).

Рефлексы с волюморецепторов.Уменьшение ОЦК ведет к увеличению ЧСС (симпатическое влия­ние).

1.Хеморецепторы, реагирующие на изменение концен­трации кислорода и углекислого газа крови. При гипоксии и гиперкапнии ЧСС увеличива­ется (симпатическое влияние). Избыток кислорода вызывает уменьшение ЧСС.

2.Рефлекс Бейнбриджа. Растяжение устий полых вен кровью вызывает рефлекторное увеличение ЧСС (торможение парасимпатического влияния).

Рефлексы с внесосудистых рефлексогенных зон.

Классические рефлекторные влияния на сердце.

1.Рефлекс Гольца. Раздражение механорецепторов брюшины вызывает урежение сердечной деятельно­сти. Такой же эффект при механическом воздейст­вии на солнечное сплетение, сильном раздражении Холодовых рецепторов кожи, сильных болевых воз­действиях (парасимпатическое влияние).

2.Рефлекс Данини-Ашнера. Надавливание на глазные яблоки вызывает урежение сердечной деятельности (парасимпатическое влияние).

3. Двигательная активность, несильные болевые раз­дражения, активация тепловых рецепторов вызывают увеличение ЧСС (симпатическое влияние).

Гуморальная регуляция деятельности сердца.

Прямая(непосредственное влияние гуморальных фак­торов на рецепторы миокарда).

Основные гуморальные регуляторы деятельности сердца:

Ацетилхолин.

Действует на М2-холинорецепторы. М2-холинорецеп-горы относятся к метаботропным рецепторам. Образование лиганд-рецепторного комплекса ацетилхолина с этими ре­цепторами приводит к активации, ассоциированной с М2-холинорецептором субъединицы Gai, которая тормозит ак­тивность аденилатциклазы и опосредованно снижает актив­ность протеинкиназы А.

Протеинкиназа А имеет важное значение в активности миозинкиназы, играющей определяющую роль в фосфорили-ровании головок тяжелых нитей миозина, ключевого процес­са сокращения миоцитов, поэтому можно полагать, что сни­жение ее активности способствует развитию отрицательного инотропного эффекта.

При взаимодействии ацетилхолина с М2-холино-рецептором не только угнетается аденилатциклаза, но и акти вируется мембранная гуанилатциклаза, ассоциированная с этим рецептором.

Это приводит к увеличению концентрации цГМФ и, как следствие, к активации протеинкиназы G, которая способна:

• фосфорилировать мембранные белки, образующие лигандуправляемые К+- и анионные каналы, что уве­личивает проницаемость этих каналов для соответст­вующих ионов;

• фосфорилировать мембранные белки, образующие лигандуправляемые Na+- и Са++- каналы, что приводит к уменьшению их проницаемости;

• фосфорилировать мембранные белки, образующие К+/ Na+- насос, что приводит к уменьшению его ак­тивности.

Фосфолирирование лигандуправляемых калиевых, на­триевых, кальциевых каналов и К+ Na+ насоса протеинкиназой G приводит к развитию тормозного действия ацетилхолина на сердце, которое проявляется в отрицательном хронотропном и отрицательном инотропном эффектах.

Кроме того, следует иметь в виду, что ацетилхолин не­посредственно активирует ацетилхолинрегулируемые калие­вые каналы атипических кардиомиоцитов.

Тем самым снижает возбудимость этих клеток за счет увеличения полярности мембран атипичных кардиомиоцитовсиноатриального узла и, как следствие, вызывает урежение сердечной деятельности (отрицательный хронотропный эф­фект).

Адреналин.

Действует на β1-адренорецепторы. β1-адренорецепторы относятся к метаботропным рецепторам. Воздействие на дан­ную группу рецепторов катехоламинами активирует аденилатциклазу Gas-субъединицей, ассоциированной с данным рецептором.

Как следствие, в цитозоле повышается содержание цАМФ, происходит активация протеинкиназы А, которая ак­тивирует специфическую миозинкиназу, ответственную за фосфорилирование головок тяжелых нитей миозина.

Такое воздействие ускоряет сократительные процессы в миокарде и проявляется как положительные ино- и хроно-тропные эффекты.

1. Тироксин регулирует изоферментный состав миози­на в кардиомиоцитах, усиливает сердечные сокраще­ния.

2. Глюкогон оказывает неспецифическое влияние, за счет активации аденилатциклазы усиливает сердеч­ные сокращения.

3. Глюкокортикоиды усиливают действие катехоламинов за счет того, что повышают чувствительность адренорецепторов к адреналину.

4. Вазопрессин. В миокарде имеются V1-рецепторы к вазопрессину, которые ассоциированы с G-белком. При взаимодействии вазопрессина с Vi -рецептором субъединица Gaq активирует фосфолипазу Сβ. Акти­вированная фосфолипаза Сβ катализирует соответст­вующий субстрат с образованием ИФ3 и ДАГ. ИФ3 активирует кальциевые каналы цитоплазматиче-ской мембраны и мембраны саркоплазматического ретикулума, что приводит к увеличению содержания кальция в цито­золе.

ДАГ параллельно активирует протеинкиназу С. Кальций инициирует мышечное сокращение и генера­цию потенциалов, а протеинкиназа С ускоряет фосфорилиро­вание головок миозина, как следствие, вазопрессин усиливает сердечные сокращения.

Простагландины I2, Е2 ослабляют симпатические влия­ния на сердце.

Аденозин.Влияет в миокарде на Р1-пуриновые рецеп­торы, которых достаточно много в области синоатриального узла. Усиливает выходящий калиевый ток, увеличивает поля­ризацию мембраны кардиомиоцита. За счет этого снижается пейсмекерная активность синоатриального узла, уменьшается возбудимость других отделов проводящей системы сердца.

Ионы калия.Избыток калия вызывает гиперполяриза­цию мембран кардиомиоцитов и, как следствие, брадикардию. Малые дозы калия увеличивают возбудимость сердеч­ной мышцы.

68. Дыхание…

Дыхание - это совокупность процессов, благодаря которым организм потребляет кислород из окружающей среды и выделяет углекислый газ.

Этапы дыхания:

1. Внешнее дыхание /вентиляция легких/ - обмен газов между атмосферным воздухом и альвеолярным, легочная вентиляция.

2. Диффузия газов в легких - обмен газов между альвеолярным воздухом и кровью в капиллярах легких.

3. Транспорт газов кровью - этот этап осуществляется за счет деятельности сердечно-сосудистой системы, в результате чего кислород доставляется к тканям, а углекислый газ - к легким.

4. Диффузия газов в тканях - обмен газов между кровью и тканями.

5. Тканевое дыхание - окислительно-восстановительные реакции, протекающие с потреблением кислорода и выделением углекислого газа.

Первые 4 этапа изучает физиология, последний, 5-ый - биохимия.

Обеспечение тканей О2 и удаление из организма СО2 зависит от четырех процессов:

1.Вентиляция легких

2.Диффузия газов в альвеолы и ткани из крови и в кровь.

3.Перфузия легких кровью /интенсивность кровотока в легких/.

4.Перфузия тканей кровью

Внешнее дыхание

В обеспечении вентиляции легких участвуют три анатомо-физиологических образования:

1) дыхательные пути, обладают небольшой растяжимостью и сжимаемостью, формируют поток воздуха,

2). легочная ткань, обладает высокой растяжимостью и эластичностью/ способность принимать исходное положение после прекращения деформирующей (растягивающей) силы,

3) грудная клетка, пассивная костно–хрящевая основа, ригидная к внешним воздействиям, объединенная в целое связками и дыхательными мышцами, снизу – подвижная диафрагма.

Наши рекомендации