В целом оба типа бань — это большая нагрузка на терморегуляционные механизмы.
Деятельность терморегуляционных механизмов у человека в парильне (русская баня) протекает в сложных условиях — потоотделение очень интенсивно, но оно практически неэффективно как способ отдачи тепла, поэтому происходит задержка тепла в организме, обезвоживание, уменьшение содержания хлоридов, сгущение и повышение вязкости крови, резкое увеличение нагрузки на сердечно-сосудистую систему. В сауне эффективность отдачи тепла за счет потоотделения достаточно высокая. Особенно она возрастает при длительном многократном употреблении сауны в результате адаптации к этому виду воздействия. Есть данные о том, что в сауне происходит расширение коронарных сосудов, что может благоприятно сказаться на деятельности сердца. За один прием сауны теряется 200—1200 мл пота. Это полезно при наличии отеков, при ожирении. Вдыхание горячего воздуха значительно усиливает кровоснабжение слизистых верхних дыхательных путей и расслабляет гладкие мышцы бронхов, снижает эластическое сопротивление легочной ткани, что в целом улучшает процесс внешнего дыхания. Улучшается и способность гемоглобина отдавать кислород тканям. Сауна положительно влияет на тонус вегетативной нервной системы: наблюдается «игра» тонуса — повышается тонус то симпатической системы, то парасимпатической.
Однако, ряд физиологов и клиницистов утверждает, что сауна более пагубно действует на сердечно-сосудистую систему, чем это принято считать. Косвенно об этом свидетельствует тот факт, что средняя продолжительность жизни финского населения значительно ниже, чем в странах такого же климата, использующих другие виды бань.
Таким образом, очевидно, что парильни и потельни — это мощный фактор воздействия на организм человека, все позитивные и негативные моменты которого требуют дальнейших исследований.
ЗАКАЛИВАНИЕ
Закаливание — это система процедур, приводящих к повышенной устойчивости организма к переохлаждению, т. е. вариант адаптации организма к неблагоприятным метеорологическим факторам, в частности, к микроклимату. Для закаливания используется действие естественных факторов: воздуха, воды, солнца.
Сущность закаливания заключается в том, что за счет постепенного воздействия терморегуляционные механизмы организма повышают свои возможности в поддержании температуры тела на постоянном уровне при различных Холодовых воздействиях на человека-Закаливание позволяет миновать эмоциональный температурный стресс, каким является
переохлаждение. Закаливание расширяет возможности адаптации организма к низким температурам или, наоборот, к высоким. Итак, закаливание — это умелое использование адаптационных механизмов организма.
Принципы закаливания — это систематичность, постепенность, последовательность, учет индивидуальных возможностей и состояния здоровья, комплексность использования закаливающих процедур.
Так, если закаливание проводилось в течение 2—3 месяцев, а затем прекращалось, то уже через 3—4 недели закаленность организма исчезает, т. к. механизмы адаптации нарушаются. У детей перерыв на 5—7 дней уже приводит к подобному эффекту.
Устойчивость организма к холодовому воздействию возникает только в той части тела, которая подвергается воздействию закаливающей процедуры.
Закаливание воздухом. В этом случае на организм действует комплекс факторов: температура, влажность, подвижность. Различают следующие виды воздушных ванн: горячие (свыше 30°), теплые (22—33°), индифферентные (21—22°), прохладные (17—21°), умеренно холодные (13—17°), холодные (4—13) и очень холодные (ниже 4°). В результате закаливания тренируется подвижность сосудистых реакций.
Солнечные ванны начинают с 3—5 минут, доводят постепенно до 1 часа, к концу лета общая продолжительность достигает 1,5—2 часов.
Закаливание водой — это наиболее эффективное средство закаливания. Здесь термический, механический и физико-химические факторы действуют в комплексе. Теплоемкость воды очень большая, а теплопроводность в 28 раз выше, чем у воздуха. Например, при +13—15° воздух кажется человеку прохладным, а вода — холодной, при +22° воздух индифферентный, а вода кажется прохладной. При +33° — воздух теплый, а вода индифферентная. При закаливании водой главный фактор — это температура воды. По температурному ощущению водные процедуры делят на горячие (свыше 40°), теплые (35—40°), индифферентные (33—35°), прохладные (20—33°) и холодные (ниже 20°). Интенсивное растирание кожи докрасна после водных процедур снижает эффективность закаливания.
Водные процедуры лучше делать утром. Различают общие и местные процедуры. Местные — обтирание отдельных участков, ванны для рук, полоскание горла. Общие — обливание, душ, купание.
Купание — одно из самых мощных воздействий. Длительность купания определяется температурой воды. В первые дни — продолжительность купания не более 4—5 минут, затем доводится до 15—20 минут, а для закаленных — 25—30 минут.
МЫШЕЧНАЯ РАБОТА И ТЕРМОРЕГУЛЯЦИЯ
Согласно данным Я. М. Коца (1982), при физической нагрузке разной мощности (при умеренной нагрузке теплопродукция возрастает до 300 ккал/час, при более интенсивной работе — до 600—900 ккал/час, против 60—85 ккал/час в условиях покоя) температура ядра тела на протяжении первых 15—30 минут длительной работы довольно быстро повышается до некоторого относительно стационарного уровня, а затем сохраняется на этом уровне или продолжает медленно возрастать. Даже в комфортных условиях окружающей среды температура ядра тела может достигать 41°, например, при марафонском беге ректальная температура поднимается до 41°. Хотя при мышечной работе срабатывают различные механизмы теплоотдачи, например, увеличивается потоотделение, повышается кожный кровоток (умеренно), отток крови от мышц идет через вены, расположенные над работающей мышцей, однако все-таки имеет место рабочая гипертермия. Природа ее остается неясной. Возможно, снижается установка гипоталамического уровня регуляции.
ИСКУССТВЕННАЯ ГИПОТЕРМИЯ
Гипотермия — это переохлаждение, при котором температура тела становится ниже 35°. В клинической практике с целью уменьшения метаболизма тканей, например, при провс-
дении операции на сердце, используется искусственная гипотермия. Различают умеренную гипотермию—снижение до 32—28°, и глубокую—снижение до 20—15° и ниже. В практической медицине, в основном, используется умеренная гипотермия, так как при глубокой гипотермии часто нарушается работа сердца. При гипотермии снижается метаболизм и потребление кислорода. С понижением на каждый градус примерно на S—6% снижается потребность в кислороде. При умеренной гипотермии потребление кислорода снижается примерно на 50%. Это позволяет выключить сердце из кровообращения на 6—10 минут. При глубокой гипотермии сердце может быть выключено на 60 минут при 12,5°, на 80 минут при 6°. Однако при понижении температуры ниже 28° имеется риск фибрилляции сердца.
Методика проведения искусственной гипотермии заключается в том, что первоначально, до охлаждения выключаются механизмы, направленные на поддержание температуры тела (механизмы теплопродукции). Наиболее удобным является применение поверхностного наркоза в сочетании с глубокой кураризацией (введением миорелаксантов, блокирующих терморегуляционный тонус и холодовую дрожь). Затем совершается охлаждение, например, обкладывание тела пузырями со льдом, обдувание охлажденным воздухом, или, что наиболее эффективно, погружение примерно 50% тела в воду при температуре 8—10°. Иногда используется аппарат искусственного кровообращения, в Котором носителем является охлажденная кровь.
В ряде случаев применяют вариант локальной гипотермии, например, при операциях на сердце, для уменьшения повреждающего действия оперативного вмешательства используют холодовую кардиоплегию (защиту), с этой целью поверхность сердца охлаждают стерильным снегом или перфузируют коронарные сосуды охлажденным раствором.
ГИПЕРТЕРМИЯ
Различают экзогенные и эндогенные гипертермии.
Экзогенные гипертермии возникают в тех случаях, когда температура в среде очень высокая, влажность тоже, а возможность для отдачи тепла резко ограничена. В этом случае, несмотря на попытки повысить отдачу тепла (гиперемия кожных покровов, максимально возможное потоотделение, максимальное увеличение ОЦК), теплопродукция преобладает, и температура тела возрастает. Такое состояние часто называют тепловым или солнечным ударом. В нем различают 3 стадии: 1) стадию компенсации, при которой температура тела еще не поднялась, но напряжение терморегуляционных механизмов уже существует; 2) стадию возбуждения: она характеризуется максимальным повышением теплоотдачи, повышением активности всех жизненно важных систем, значительным ростом дыхательных движений (это приводит к гипокапнии, алкалозу, нарушению функции дыхания и, в конечном итоге, к уменьшению процессов торможения в ЦНС); 3) стадию параличей — стадию торможения — возникает паралич дыхательного центра, нарушается функция сосу-додвигательного центра, происходит падение артериального давления, возникает острая почечная недостаточность, сгущение крови, снижение ОЦК. Все это и проявляется в синдроме «тепловой удар».
ЛИХОРАДОЧНАЯ РЕАКЦИЯ
Лихорадка, или пирексня (жар, горячка), представляет собой реакцию организма на действие пирогенного фактора и проявляется повышением температуры ядра тела. Эта реакция является защитным механизмом, направленным против вирусов, микроорганизмов. По степени подъема температуры различают:
— субфебрильную лихорадку (повышение температуры тела до 38°), умеренную (38—39°) и чрезмерную (выше 41°).
Факторы, вызывающие лихорадку, — это пирогенные факторы. К ним относят: полисахариды дрожжей, липотейхоевую кислоту грамм-положительных микробов (кокков), раз-
личные компоненты вирусов, экзотоксины микробов белкового происхождения, туберкулин и другие аллергены, трансплантированные органы, продукты распада собственных тканей после их поступления в кровь, лектины (содержащиеся в продуктах растительного происхождения), продукты активации комплемента, комплексы «антиген-антитело». Все эти факторы сами по себе не способны вызывать лихорадку. Поэтому их называют экзогенными пирогенами. Попав в кровь, они активируют фагоциты, в результате чего происходит высвобождение из фагоцита эндогенного пирогена, или, как его назвали, лейкоцитарного пирогена. Скорее всего, таким эндогенным фактором является интерлейкин (ИЛ). Этот эндогенный пироген оказывает свое влияние на центры терморегуляции: наиболее вероятно, что в результате этого воздействия меняется термоустановочная точка, или, как говорят в кибернетике, — меняется уставка (уровень регулируемой величины). В результате — организм вынужден вести себя как при охлаждении: резко повышается теплопродукция и одновременно снижается теплоотдача, вследствие чего температура ядра тела возрастает до нового значения. Существует, однако, и иная точка зрения на причину повышения температуры — полагают, в частности, что эндогенный пироген, например, ИЛ, меняет чувствительность сенсорных нейронов терморегулирующих центров к потокам импульсов, идущих от терморецепторов.
Дискуссионным является вопрос о конкретном механизме действия эндогенного пирогена. Возможно, что пирогенный фактор за счет взаимодействия с рецепторами нейронов центров терморегуляции повышает внутриклеточную концентрацию цАМФ, что и приводит к изменению термоустановочной точки. Не исключается возможность, что эндогенный пироген повышает продукцию простагландинов ПГЕ, которые воздействуют на нейроны и вызывают в них (вторично) повышение уровня цАМФ. Предполагают также, что оба этих механизма могут «сосуществовать», реализовываясь одновременно. Причастность ПГЕ, к пирогенным реакциям (к лихорадке) доказывается тем, что вещества, блокирующие синтез ПГЕ,, одновременно являются жаропонижающим, т. е. обладают антипирогенными свойствами.
Наработка эндогенного пирогена происходит как в микрофагах — в гранулоцитах (ней-трофилах, эозинофилах), так и в макрофагах — моноцитах, клетках Купфера, гистиоцитах.
Эндогенный пироген интерлейкин обладает широким спектром действия. Помимо пи-рогенных свойств он способен: 1) активировать гипоталамурде. гипофиз, запуская стресс-реакцию, 2) повышать резистентность организма к боли, т. е. обладает болеутоляющим эффектом, 3) регулировать кооперацию иммунокомпетентных клеток в ходе иммунологических реакций, 4) усиливать регенерацию тканей, 5) активировать в печени синтез белков острой фазы воспаления — фибронектина и С-реактивного белка, фактора, усиливающего фагоцитарный процесс (опсонин) и т. д. Предполагается, что интерлейкин в будущем станет ценным лекарственным средством.
Глава 23
ФИЗИОЛОГИЯ ПИЩЕВАРЕНИЯ
СУЩНОСТЬ ПРОЦЕССОВ, ПРОИСХОДЯЩИХ В ЖЕЛУДОЧНО-КИШЕЧНОМ ТРАКТЕ
Ежесуточно взрослый человек должен получать около 80—100 г белков, 80—100 г жира и 400 г углеводов. Они поступают с пищей. Вместе с ними в пище содержатся минеральные соли, микроэлементы, витамины, а также балластные вещества, которые являются ценным компонентом пищи.
Рис. 85. Сущность процессов переваривания компонентов пищи. |
Сущность пищеварения заключается в том, что после необходимой механической обработки, т. е. размельчения и растирания пищи во рту, желудке и в тонком кишечнике происходит гидролиз белков, углеводов и жиров. Он проходит в два этапа—вначале в полости пищеварительного тракта происходит разрушение полимера до олиго-меров, а затем—в области мембраны энтероцита (пристеночное, или мембранное пищеварение) — происходит окончательный гидролиз до мономеров — аминокислот, моносахаридов, жирных кислот, моноглицери-дов. Молекулы-мономеры с помощью специальных механизмов всасываются, т. е. реабсорбиру-ются через апикальную поверхность энтероцитов и переходят в кровь или лимфу, откуда поступают в различные органы, проходя первоначально через систему воротной вены печени. Все «балластные» вещества, которые не смогли быть гидролизованы ферментами желудочно-кишечного тракта, идут в толстый кишечник, где с помощью микроорганизмов подвергаются дополнительному расщеплению (частичному или полному), при этом часть продуктов этого расщепления всасывается в кровь макроорганизма, а часть идет на питание микрофлоры. Микрофлора способна также продуцировать биологически активные вещества и ряд витаминов, например, витамины группы В.
Заключительным этапом пищеварения является формирование каловых масс и их эвакуация (акт дефекации). В среднем их масса достигает 150—250 г. В норме акт дефекации совершается 1 раз в сутки, у 30% людей — 2 раза и больше, а у 8% — реже 1 раз в сутки. За счет аэрофагии и жизнедеятельности микрофлоры в желудочно-кишечном тракте накапливается около 100—500 мл газа, который частично выделяется при дефекации или вне ее.
ТИПЫ ПИЩЕВАРЕНИЯ
В зависимости от происхождения гидролитических ферментов различают 1) собственное пищеварение — оно идет за счет ферментов, вырабатываемых человеком или животным; 2) симбионтное — за счет ферментов симбионтов, например, ферментов микроорганизмов, населяющих толстый кишечник; 3) аутолитическое — за счет ферментов, вводимых вместе с пищей. Это, например, характерно для молока матери, в нем содержатся ферменты, необходимые для створаживания молока и гидролиза его компонентов. У взрослого человека главное значение в процессах пищеварения имеет собственное пищеварение.
В зависимости от локализации процесса гидролиза питательных веществ различают: 1) внутриклеточное и 2) внеклеточное пищеварение, причем внеклеточное делится на: а) дистантное, или полостное, и б) контактное, или пристеночное, пищеварение.
Внутриклеточное пищеварение представляет собой процесс, происходящий внутри клетки. Фагоциты — яркий пример использования этого способа гидролиза. Как правило, внутриклеточное пищеварение осуществляется с помощью гидролаз, расположенных в лизосо-мах. В процессе собственного (истинного) пищеварения у человека основная роль принадлежит полостному и пристеночному пищеварению.
Полостное пищеварение. Оно совершается в различных отделах ЖКТ, начиная с ротовой полости, но его выраженность различна. Слюнные железы, железы желудка, панкреатическая железа, многочисленные железы кишечника вырабатывают соответствующие соки (слюну
— в ротовой полости), в которых помимо различных компонентов содержатся ферменты
— гидролазы, осуществляющие гидролиз соответствующих полимеров — белков, сложных
углеводов, жиров. Как правило, гидролиз происходит в водной фазе и во многом он опреде
ляется рН среды, температурой, а для липаз — содержанием в среде эмульгатора жира —
желчных кислот. Он заканчивается образованием мелких молекул — дисахаридов, дипеп-
тидов, жирных кислот, моноглицеридов.
Пристеночное (мембранное) пищеварение. Идея о существовании пристеночного пищеварения была высказана А. М. Уголевым в 1963 г. Проводя опыты с отрезком тонкой кишки, он обнаружил, что гидролю крахмала под алиянием амилазы в присутствии отрезка тонкой кишки крысы, обработанного специальным образом (для удаления собственной амилазы), происходит значительно быстрее, чем без него. А. М. Уголев предположил, что в апикальной части энтероцитов происходит процесс, способствующий окончательному перевариванию питательных веществ. Последующее развитие науки подтвердило правильность этой гипотезы, которая в настоящее время признана аксиомой физиологии пищеварения.
Пристеночное пищеварение осуществляется на апикальной поверхности энтероцита. Здесь, в его мембране, встроены ферменты-гидролазы, которые совершают окончательный гидролиз питательных веществ, например, мальтаза, расщепляющая мальтозу до двух молекул глюкозы, инвертаза, расщепляющая сахарозу до глюкозы и фруктозы, дипептидазы. Эти ферменты состоят из двух частей — гидрофильной и гидрофобной. Гидрофильная часть находится над мембраной, а гидрофобная часть — внутри мембраны, она выполняет «якорную» функцию. Ферменты, которые осуществляют пристеночное пищеварение, как правило, синтезируются внутри самого энтероцита, в том числе мальтаза, инвертаза, изомальта-за, гамма-амилаза, лактаза, трегалаза, щелочная фосфатаза, моноглицеридлипаза, пептида-зы, аминопептидазы, карбоксипептидазы и другие. После синтеза эти ферменты встраиваются в мембрану как типичные интегральные белки. Эффективность пристеночного пи-
щеварения во многом возрастает благодаря тому, что этот процесс сопряжен со следующим этапом — транспортом молекулы через энтероцит в кровь или лимфу, т. е. с процессом всасывания. Как правило, вблизи от фермента-гидролазы находится транспортный механизм («транспортер», по терминологии А. М. Уголева), который, как в эстафете, принимает на себя образовавшийся мономер и транспортирует его через апикальную мембрану энтероцита внутрь клетки.
Энтероцит покрыт микроворсинками, в среднем до 1700—3000 штук на клетку. На 1 мм2 таких ворсинок — около 50—200 млн. За счет них площадь мембраны, на которой совершается пристеночное пищеварение, возрастает в 14—39 раз. В мембранах этих микроворсинок и локализуются ферменты — гидролазы. Между микроворсинками и на их поверхности расположен слой гликокаликса — это перпендикулярно по отношению к поверхности мембраны энтероцита расположенные филаменты (диаметр их от 2 до 5 нм, высота — 0,3— 0,5 мкм), которые образуют своеобразный пористый реактор. Периодически, когда глико-каликс чрезмерно загрязнен, он, для очистки поверхности энтероцита, отторгается. При патологии возможны ситуации, когда клетка вообще надолго лишается гликокаликса, и в этом случае нарушается процесс пристеночного пищеварения. Гликокаликс обеспечивает над апикальной мембраной энтероцита своеобразную среду. Гликокаликс является молекулярным ситом и ионообменником — расстояния между соседними филаментами гликокаликса таковы, что они не пропускают внутрь гликокаликса крупные частицы, в том числе «недопереваренные» продукты, микроорганизмы, которые населяют тонкий кишечник. Благодаря наличию электрических зарядов (катионов, анионов) гликокаликс является ио-. нообменником. В целом, гликокаликс обеспечивает стерильность и избирательную проходимость для среды, расположенной над мембраной энтероцита/Между филаментами гликокаликса расположены ферменты — гидролазы, основная часть которых происходит из соков — кишечного и панкреатического, и здесь они довершают начатый в полости кишечника процесс частичного гидролиза.
Над гликокаликсом имеется также еще один слой — так называемый слой слизистых наложений. Он образован слизью, продуцируемой бокаловидными клетками, и фрагментами слущивающегося кишечного эпителия. В этом слое сорбировано много ферментов панкреатического сока, кишечного сока. Этот слой является местом примембранного пищеварения.
Таким образом, переход от полостного пищеварения к пристеночному осуществляется постепенно, через два важных в функциональном отношении слоя — слоя слизистых наложений и слоя гликокаликса. Затем идет собственно слой пристеночного (мембранного) пищеварения, в котором совершается окончательный гидролиз питательных веществ и последующий их транспорт через энтероцит в кровь или лимфу.
A.M. Уголев отмечал, что на сегодня много еще остается неясным в этой сложной проблеме пристеночного пищеварения.
ВСАСЫВАНИЕ
Всасывание нутриентов, т. е. питательных веществ является конечной целью процесса пищеварения. Этот процесс осуществляется на всем протяжении ЖКТ — от ротовой полости до толстого кишечника, но его интенсивность различна: в ротовой полости, в основном, всасываются моносахариды, некоторые лекарственные вещества, например, нитроглицерин; в желудке, в основном, всасываются вода и алкоголь; в толстом кишечнике — вода, хлориды, жирные кислоты; в тонком кишечнике — все основные продукты гидролиза. В 12-перстной кишке всасываются ионы кальция, магния, железа; в этой кишке и в начале тощей кишки идет преимущественно всасывание моносахаридов, более дистально происходит всасывание жирных кислот, моноглицеридов, а в подвздошной кишке — всасывание белка, аминокислот. Жирорастворимые и водорастворимые витамины всасываются в дистальных участках тощей кишки и в проксимальных участках подвздошной.
Рис. 86. Всасывание продуктов расщепления белков, углеводов и жиров (вероятные варианты). Всасывание в кровь (К).
А — аминокислоты, М — моносахариды в сопряжении с Na, Г — глицерин, Ж—жирные кислоты — синтез уподобленных триглицеридов в эпителиоцитах — формирование Хм — хиломикронов и всасывание в лимфу (ЛК). Жел — желчные кислоты частично возвращаются в полость кишечника, частично всасываются в кровь и возвращаются в печень.
Не все области тонкой кишки «заняты» процессом всасывания, дистальные участки обычно не участвуют в этом процессе. Однако при патологии проксимальных участков дистальные участки берут на себя эту функцию. Таким образом, в организме существует защитный вариант всасывания.
Механизмы транспорта, т. е. всасывания веществ многообразны. Часть веществ, например вода, может проходить через межклеточные (межэнтероцитарные) промежутки — это механизм персорбции. Таким образом, кстати, происходит и процесс реабсорбции воды в собирательных трубках почки. В ряде случаев имеет место механизм эндоцитоза, т. е. поглощение энтероцитом большой, неразрушенной молекулы внутрь клетки, а затем выделение ее в интерстиций и в кровь за счет механизма экзоцитоза. Очевидно, таким способом транспортируются иммуноглобулины у новорожденных и грудных детей, вскармливаемых женским молоком. Не исключено, что у взрослых ряд молекул тоже транспортируется за счет эндо- и экзоцитоза.
Важное место среди механизмов всасывания занимают механизмы пассивного транспорта — диффузия, осмос, фильтрация, а также облегченная диффузия (транспорт без затрат энергии по градиенту концентрации, но с использованием «транспортеров»). Механизм осмоса позволяет реабсорбировать большой объем воды — в среднем за сутки около 8 л (2,5 — с пищей, остальная вода — это вода пищеварительных соков): вместе с осмотически активными веществами, например, с глюкозой, аминокислотами, ионами натрия, кальция, калия — в энтероциты входит пассивно вода. Частично вода входит в интерстиций (а затем и в кровь) за счет процессов фильтрации — если гидростатическое давление в полости кищечника превышает осмотическое давление в этой среде, то это создает возможность для реабсорбции воды с помощью фильтрационного механизма.
Основным механизмом, обеспечивающим реабсорбцию различных веществ (глюкозы, аминокислот, солей натрия, кальция, железа) является активный транспорт, для реализа-
ции которого необходима энергия, возникающая в результате гидролиза АТФ. Ионы натрия транспортируются за счет механизма первично-активного транспорта, а глюкоза, аминокислоты и ряд других веществ — за счет вторично-активного транспорта, зависимого от транспорта натрия. Ниже будут рассмотрены возможные модели транспорта (см. Гидролиз углеводов и белков).
Особое положение в транспорте занимают продукты липолиза и сами жиры. Будучи жирорастворимыми, они могут проходить через мембранные барьеры пассивно, по градиенту концентрации. Но для этого необходимо «организовать» такой поток, сделать его реальным. Очевидно, с этой целью в полости кишки продукты гидролиза липидов — жирные кислоты, имеющие длинные цепочки, 2-моноглицериды, холестерин — объединяются в мицеллы — мельчайшие капельки, которые способны диффундировать через апикальную мембрану энтероцита внутрь его. Процесс образования мицелл связан с действием желчных кислот. Внутри энтероцита из вновь синтезируемых липидов образуются структуры, удобные для дальнейшего транспорта — хиломикроны. Не исключено, что для облегчения транспорта мицелл и хиломикрон в мембранах имеются специфические переносчики, т. е. имеет место облегченная диффузия.
РЕГУЛЯЦИЯ ВСАСЫВАНИЯ
Она осуществляется за счет изменений процессов кровотока через слизистую кишечника, желудка, лимфотока, энергетики, а также за счет синтеза «транспортеров» (насосов и специфических переносчиков).
Кровоток в чревной области во многом зависит от стадии пищеварения. Известно, что в условиях «пищевого покоя» в чревной кровоток поступает 15^-20% МОК. При усилении функциональной активности ЖКТон может возрастать в 8—10 раз. Это способствует не только увеличению продукции пищеварительных соков, моторной активности, но и повышает процесс всасывания, т. е. кровоток через ворсинки слизистой кишечника при этом возрастает, и создаются благоприятные условия для оттока крови, богатой всосавшимся нутриентом. Усиление кровотока происходит главным образом за счет продукции вазоди-лататоров, особенно серотонина—наиболее сильного вазодилататора прекапилляров ЖКТ. Другие гормоны, например, гастрин, гйстамнн, холецистокинин-панкреозимнн тоже способствуют этому процессу. Когда по каким-то причинам системное давление меняется, то кровоток через ворсинку все-таки сохраняется (в диапазоне изменения системного давления от 100 до 30 мм рт. ст.). Это обеспечивается за счет достаточно выраженного механизма ауторегуляции подобно тому, что имеет место в сосудах мозга.
Интенсивность кровотока и, особенно, лимфотока может также регулироваться за счет сократительной активности ворсинки: имеющиеся в ней ГМК при выделении в кровь инте-стинальных гормонов активируются и вызывают периодическое сокращение ворсинки, происходит выдавливание содержимого кровеносного и лимфатического сосудов, что способствует удалению нутриентов от энтероцита. Считается, что таким гуморальным веществом является вилликинин, продуцируемый в тонком кишечнике.
Активность продольной и циркулярной мускулатуры тонкого кишечника способствует перемешиванию химуса, созданию оптимального внутрикишечного давления — все это тоже облегчает процесс всасывания. Поэтому все факторы, положительно влияющие на моторную активность кишечника, повышают эффективность всасывания.
Регуляция синтеза «транспортеров» осуществляется, как правило, за счет «классических» гормонов — альдостерона, глюкокортикоидов, 1,25-дигидрооксихолекальциферола (1,25-витамин Дз) и других гормонов. Например, повышение продукции альдестерона сопровождается увеличением образования в энтероцитах натриевых насосов, способствующих активному транспорту натрия. Косвенно это отражается на вторично-активном транспорте аминокислот и моносахаридов. Метаболит витамина Д} — 1,25-дигидроокси-холекальциферол повышает синтез кальцийсвязывающего белка в кишечнике, способст-
Физиология человека
вуя всасыванию ионов кальция. Паратгормон повышает скорость образования этого метаболита из витамина Дз (холекальцифсрол) и косвенно способствует повышению всасывания кальция.
Следует обратить внимание на то, что гормоны, меняющие процесс реабсорбции данного вещества в кишечнике, одновременно и в том же направлении меняют и процессы реабсорбции этого же вещества в почках, так как механизмы реабсорбции в кишечнике и в почках во многом общие.