Принципы регуляции температуры тела. тепловой баланс
Температура ядра (тела) определяется двумя потоками — теплообразованием (теплопродукцией) и теплоотдачей (тепловыделением). При термонейтральной, или комфортной зоне (при 27—32°С), существует баланс между теплопродукцией и теплоотдачей. Например, в условиях физиологического покоя в организме продуцируется около 1,18 ккал/мину-ту (или около 70 ккал в час) и такое же количество тепла отдается в окружающую среду. При низкой температуре среды, несмотря на механизм защиты, возрастает потеря тепла организмом. В этих условиях для сохранения температуры тела организм должен эквивалентно повысить теплопродукцию. Таким образом, возникает новый уровень теплового баланса. Например, при температуре воздуха 10°С теплоотдача достигает 120 ккал/час (в условиях комфорта — 70 ккал/час), поэтому для поддержания температуры тела на постоянном уровне теплопродукция тоже должна возрастать до 120 ккал/час.
При высокой температуре окружающей среды, например, при 40°С, отдача тепла значительно уменьшается, например, до 40 ккал/час (вместо 70 ккал/час в условиях комфортной среды). Для поддержания постоянства температуры тела теплопродукция тоже должна снизиться примерно до 40 ккал/час. Устанавливается новый уровень теплового баланса, который и обеспечивает поддержание температуры тела.
Из приведенных примеров следует, что ведущим фактором, определяющим уровень теплового баланса, является температура окружающей среды.
Учитывая, что продукция тепла меняется в зависимости от вида физической активности человека, а величина теплоотдачи во многом зависит от температуры окружающей среды, необходимы механизмы регуляции теплопродукции и теплоотдачи. Они осуществляются с участием специализированных структур мозга, объединенных в центр терморегуляции. Принцип регулирования заключается в том, что управляющее устройство (центр терморегуляции) получает информацию от терморецепторов. На основании этой информации оно вырабатывает такие команды, благодаря которым деятельность объектов управления (рабочие структуры, определяющие интенсивность теплопродукции и теплоотдачи) изменяется так, что возникает новый уровень теплового баланса, в результате которого температура тела сохраняется на постоянном уровне. Система терморегуляции может работать в режиме слежения или по принципу рассогласования — изменилась температура крови, изменяется деятельность объектов управления. Однако в системе терморегуляции предусмотрен и более мягкий способ поддержания постоянства температуры тела, который основан на принципе регуляции по возмущению: улавливается изменение температуры среды, и не дожидаясь, когда она отразится на температуре крови, в системе возникают команды, меняющие работу объектов управления таким образом, что температура крови сохраняется постоянной. Кроме того, система терморегуляции может функционировать и в режиме управления по прогнозированию, т. е. досрочного управления (это условные рефлексы): человек еще только собирается выйти на зимнюю улицу, а у него уже возрастает продукция тепла, необходимого для компенсации теплопотерь, которые произойдут у человека на улице в условиях низкой температуры. Во всех случаях для оптимального регулирования интенсивности теплопродукции и теплоотдачи необходима информация о температуре тела (ядра и оболочки). Она передается в ЦНС от терморецепторов.
ФИЗИОЛОГИЯ ТЕРМОРЕЦЕПТОРОВ
Терморецепторы расположены на различных участках кожи, во внутренних органах (в желудке, кишечнике, матке, мочевом пузыре), в дыхательных путях, слизистых, роговице глаза, скелетных мышцах, кровеносных сосудах, в том числе в артериях, аортальной и каротидной зонах, во многих крупных венах, а также в коре больших полушарий, спинном мозге, ретикулярной формации, среднем мозге, гипоталамусе.
Полагают, что терморецепторы ЦНС — это, скорее всего, нейроны, которые одновременно выполняют роль рецепторов и роль афферентного нейрона.
Наиболее полно изучены терморецепторы кожи. Больше всего терморецепторов на коже головы (лицо) и шеи. В среднем на 1 мм2 поверхности кожи приходится 1 терморецептор. Кожные терморецепторы делятся на холодовые и тепловые. В свою очередь, холодоные подразделяются на собственно холодовые (специфические), реагирующие только на изменение температуры, и тактильно-холодовые, или неспецифические, которые одновременно могут отвечать и на изменение температуры, и на давление.
Холодовые рецепторы располагаются на глубине 0,17 мм от поверхности кожи. Всего их около 250 тысяч. Реагируют на изменение температуры с коротким латентным периодом. При этом частота ПД линейно зависит от температуры в пределах от 410 до 10°С: чем ниже температура, тем выше частота импульсации. Оптимальная чувствительность в диапазоне от 15° до 30°С, а по некоторым данным — до 34°С.
Тепловые рецепторы залегают глубже — на расстоянии 0,3 мм от поверхности кожи. Всего их около 30 тысяч. Реагируют на изменение температуры линейно в диапазоне от 20° до 50°С: чем выше температура, тем выше частота генерации ПД. Оптимум чувствительности в пределах 34—43°С.
Среди Холодовых и тепловых рецепторов имеются разные по чувствительности популяции рецепторов: одни реагируют на изменение температуры, равное 0,1°С (высокочувстви-
Физиология человека
тельные рецепторы), другие — на изменение температуры, равное ГС (рецепторы средней чувствительности), третьи — на изменение в 10°С (высокопороговые, или рецепторы низкой чувствительности).
Информация от кожных рецепторов идет в ЦНС по афферентным волокнам группы А-дель-та и по волокнам группы С, в ЦНС она доходит с разной скоростью. Вероятнее всего, что импульсы от Холодовых рецепторов идут по волокнам А-дельта.
Импульсация от кожных рецепторов поступает в спинной мозг, где расположены вторые нейроны, дающие начало спиноталамическому пути, который заканчивается в вентро-базальных ядрах таламуса, откуда часть информации поступает в сенсомоторную зону коры больших полушарий, а часть — в гипоталамические центры терморегуляции.
Высшие отделы ЦНС (кора и лимбическая система) обеспечивают формирование тепло-ощущения (тепло, холодно, температурный комфорт, температурный дискомфорт). Ощущение комфорта строится на потоке импульсации от терморецепторов оболочки (в основном — кожи). Поэтому организм можно «обмануть» — если в условиях высокой температуры охлаждать тело прохладной водой, как это бывает при летнем купании в зной, то создается ощущение температурного комфорта.
ЦЕНТРЫ ТЕРМОРЕГУЛЯЦИИ
Терморегуляция в основном осуществляется с участием ЦНС, хотя возможны и некоторые процессы терморегуляции без ЦНС. Так, известно, что кровеносные сосуды кожи могут сами по себе реагировать на холод: за счет термочувствительности ГМК к холоду происходит релаксация гладких мышц, поэтому на холоде вначале происходит рефлекторный спазм, что сопровождается болевым ощущением, а потом сосуд расширяется за счет прямого воздействия холода на ГМК. Таким образом, сочетание двух механизмов регуляции дает возможность, с одной стороны, сохранить тепло, а с другой — не позволить тканям испытывать кислородное голодание.
Центры терморегуляции представляют собой в широком смысле совокупность нейронов, участвующих в терморегуляшш. Они обнаружены в различных областях ЦНС, в том числе — в коре больших полушарий, лимбической системе (амигдалярный комплекс, гип-покамп), таламусе, гипоталамусе, среднем, продолговатом и спинном мозге. Каждый отдел мозга выполняет свои задачи. Властности, кора, лимбическая система и таламус обеспечивают контроль за деятельностью гипоталамических центров и спинномозговых структур, формируя адекватное поведение человека в различных температурных условиях среды (рабочая поза, одежда, произвольная двигательная активность) и ощущения тепла, холода или комфорта. С помощью коры больших полушарий осуществляется заблаговременная (досрочная) терморегуляция — формируются условные рефлексы. Например, у человека, собирающегося выйти на улицу зимой, заблаговременно возрастает теплопродукция.
В терморегуляции участвуют симпатическая и соматическая нервные системы. Симпатическая система регулирует процессы теплопродукции (гликогенолиз, липолиз), процессы теплоотдачи (потоотделение, теплоотдачу путем теплоизлучения, теплопроведения и конвекции — за счет изменения тонуса кожных сосудов). Соматическая система регулирует тоническое напряжение, произвольную и непроизвольную фазную активность скелетных мышц, т. е. процессы сократительного термогенеза.
Основную роль в терморегуляции играет гипоталамус. В нем различают скопления нейронов, регулирующих теплоотдачу (центр теплоотдачи) и теплопродукцию.
Впервые существование таких центров в гипоталамусе обнаружил К. Бернар. Он производил «тепловой укол» (механически раздражал гипоталамус животного), после чего повышалась температура тела.
Животные с разрушенными ядрами преоптической области гипоталамуса плохо переносят высокие температуры окружающей среды. Раздражение электрическим током этих структур приводит к расширению сосудов кожи, потоотделению, появлению тепловой одыш-
ки. Это скопление ядер (главным образом, паравентрикулярных, супраоптических, супра-хиазматических) и получило название «центра теплоотдачи».
При разрушении нейронов задних отделов гипоталамуса животное плохо переносит холод. Электростимуляция этой области вызывает повышение температуры тела, мышечную дрожь, увеличение липолиза, гликогенолиза. Полагают, что эти нейроны, в основном, концентрируются в области вентромедиального и дорсомедиального ядер гипоталамуса. Скопление этих ядер получило название «центра теплопродукции».
Разрушение центров терморегуляции превращает гомойотермный организм в пойкило-термный.
Как устроены и каким образом работают гипоталамические центры терморегуляции? Согласно К. П. Иванову (1983, 1984), в центрах теплопродукции и теплоотдачи имеются сенсорные, интегрирующие и эфферентные нейроны. Сенсорные нейроны воспринимают информацию от терморецепторов, расположенных на периферии, а также непосредственно от крови, омывающей нейроны. К. П. Иванов делит сенсорные нейроны на два вида: 1) воспринимающие информацию от периферических терморецепторов и 2) воспринимающие температуру крови. Информация от'сенсорных нейронов поступает на интегрирующие нейроны, где происходит суммация всей информации о состоянии температуры ядра и оболочки тела, т. е. эти нейроны «вычисляют» среднюю температуру тела. Затем информация поступает на командные нейроны, в которых происходит сличение текущего значения средней температуры тела с заданным уровнем. Вопрос о нейронах, которые задают этот уровень (в кибернетике — «уставку»), остается открытым. Но, вероятно, такие нейроны есть, и они могут быть расположены в коре, лимбической системе или, что более вероятно, в гипоталамусе. Итак, если в результате сличения выявляется отклонение от заданного уровня, то возбуждаются эфферентные нейроны: в центре теплоотдейи — это нейроны, регулирующие потоотделение, тонус кожных сосудов, объем циркулирующей крови, а в центре теплопродукции — это нейроны, которые регулируют процесс образования тепла. Остается пока не ясным, каждый ли центр (теплоотдачи и теплопродукции) занимается «расчетами» и самостоятельно принимает решения, или существует еще какой-то отдельный центр, где совершается этот процесс.
Рассмотрим более подробно связи эфферентных нейронов центров терморегуляции.
Центры теплоотдача.При возбуждении эфферентных нейронов центра теплоотдачи может уменьшаться тонус сосудов кожи. Это осуществляется за счет воздействия эфферентных нейронов центра теплоотдачи (условно назовем их — нейроны «сосудов кожи») на сосудодвигательный центр, который, в свою очередь, влияет на активность спинномозговых симпатических нейронов, посылающих поток импульсов к гладким мышцам сосудов кожи. В итоге, при возбуждении гипоталамических нейронов «сосудов кожи» снижается тонус кожных сосудов, возрастает кожный кровоток и увеличивается отдача тепла за счет теплоизлучения, теплопроведения и конвекции. Усиление кожного кровотока способствует также повышению потоотделения (отдачи тепла путем испарения). Если изменение кожного кровотока недостаточно для отдачи тепла, то возбуждаются нейроны, которые приводят к выбросу крови из кровяных депо и, тем самым, — к повышению объема теплоперено-са. Если и этот механизм не способствует нормализации температуры, то возбуждаются эфферентные нейроны центра теплоотдачи, которые возбуждают симпатические нейроны, активирующие потовые железы, эти нейроны гипоталамуса можно условно назвать «пото-регулирующие нейроны», или нейроны, регулирующие потоотделение. Симпатические нейроны, активирующие потоотделение, располагаются в боковых столбах спинного мозга (Th2—L2), а постганглионарные нейроны локализуются в симпатических ганглиях. Пост-ганглионарные волокна, идущие к потовым железам, являются холинергичсскими, их медиатором является ацетилхолин, который повышает активность потовой железы за счет взаимодействия с ее М-холинорецепторами (блокатор — атропин).
Центры теплопродукции.Эфферентные нейроны центра теплопродукции тоже можно условно разделить на несколько типов, каждый из которых включает в действие соответствующий механизм теплопродукции.
а) Одни нейроны при своем возбуждении активируют симпатическую систему, в резуль
тате чего повышается интенсивность процессов, генерирующих энергию (липолиз, глико-
генолиз, гликолиз, окислительное фосфорилирование). В частности, симпатические нервы
за счет взаимодействия их медиатора (норадреналина) с бета-адренорецепторами активи
руют процессы гликогенолиза и гликолиза в печени, процессы липолиза в буром жире.
Одновременно, при возбуждении симпатической нервной системы увеличивается секреция гормонов мозгового слоя надпочечников — адреналина и норадреналина, которые повышают продукцию тепла в печени, скелетных мышцах, буром жире, активируя гликоге-нолиз, гликолиз и липолиз.
б) В гипоталамусе имеются эфферентные нейроны, которые влияют на гипофиз, а через
него — на щитовидную железу: возрастает продукция йодосодержащих гормонов (Т3 и Т4),
которые, возможно, за счет разобщения процессов окислительного фосфорилирования по
вышают поток первичной теплоты, т. е. под их влиянием уменьшается аккумуляция энер
гии в АТФ, а большая часть энергии рассеивается в виде тепла.
в) В гипоталамяческом центре теплопродукции имеется также популяция эфферентных
нейронов, возбуждение которых приводит к появлению терморегуляционного тонуса (при
этом в скелетных мышцах возрастает тонус, благодаря чему, примерно на 40—60% возра
стает теплообразование) или возникают фазноподобные сокращения отдельных мышечных
волокон, которые получили название «дрожь». Во всех этих случаях команда от эфферент
ных нейронов гипоталамуса передается, в конечном итоге, на альфа-мотонейроны. Возможно,
что так называемый центральный дрожательный путь представляет собой эфферентный путь,
идущий от гипоталамуса к альфа-мотонейронам через промежуточные образования, в част
ности, через покрышку среднего мозга (тектоспинальный путь) и через красное ядро (руб-
роспинальный тракт). Детали этого пути до сих пор не ясны.
Итак, общая схема терморегуляции условно выглядит следующим образом:
Примечание. При усиленной продукции пота возрастает активность калликреина, поэтому увеличивается концентрация в крови брадикинина. Брадикинин способствует потоотделению и расширению сосудов кожи.
МЕХАНИЗМЫ ТЕПЛОПРОДУКЦИИ
Источником тепла в организме являются экзотермические реакции окисления белков, жиров, углеводов, а также гидролиза АТФ. При гидролизе питательных веществ часть освобожденной энергии аккумулируется в АТФ, а часть рассеивается в виде теплоты (первичная теплота). При использовании энергии, аккумулированной в АТФ, часть энергии идет на выполнение полезной работы, часть рассеивается в виде тепла (вторичная теплота). Таким образом, два потока теплоты — первичной и вторичной — являются теплопродукцией. При высокой температуре среды или соприкосновении человека с горячим телом, часть тепла организм может получать извне (экзогенное тепло).
При необходимости повысить теплопродукцию (например, в условиях низкой температуры среды), помимо возможности получения тепла извне, в организме существуют механизмы, повышающие продукцию тепла.
Классификация механизмов теплопродукции:
1. Сократительный термогенез — продукция тепла в результате сокращения скелетных
мышц:
а) произвольная активность локомоторного аппарата;
б) терморегуляционный тонус; .
в) холодовая мышечная дрожь, или непроизвольная ритмическая активность скелет
ных мышц. . . , ,.........
2. Несократительный термогенез, или недрожательный термогенез (продукция тепла в
результате активации гликолиза, Лшкогенолиза и липолиза):
а) в скелетных мышцах (за счет разобщения окислительного фосфорилирования);
б) в печени; г
в) в буром жире;
г) за счет специфико-динамического действия пищи.
СОКРАТИТЕЛЬНЫЙ ТЕРМОГЕНЕЗ
При сокращении мышц возрастает гидролиз АТФ, и поэтому возрастает поток вторичной теплоты, идущейна согревание тела. Произвольная мышечная активность, в основном, возникает под влиянием коры больших полушарий. Опыт человека показывает, что в условиях низкой температуры среды необходимо движение. Поэтому реализуются условноре-флекторные акты, возрастает произвольная двигательная активность. Чем она выше, тем выше теплопродукция. Возможно повышение ее в 3—5 раз по сравнению с величиной основного обмена. Обычно при снижении температуры среды и температуры крови первой реакцией является увеличение терморегуляционного тонуса. Впервые его выявили в 1937 г. у животных, а в 1952 г. — у человека. С помощью метода электромиографии показано, что при повышении тонуса мышц, вызванного переохлаждением, повышается электрическая активность мышц. С точки зрения механики сокращения, терморегуляционный тонус представляет собой микровибрацию. В среднем, при его появлении, теплопродукция возрастает на 20—45% от исходного уровня. При более значительном переохлаждении терморегуляционный тонус переходит в мышечную холодовую дрожь. Терморегуляционный тонус экономнее, чем мышечная дрожь. Обычно в его создании участвуют мышцы головы и шеи.
Дрожь, или холодовая мышечная дрожь, представляет собой непроизвольную ритмическую активность поверхностно расположенных мышц, в результате которой теплопродукция возрастает по сравнению с исходным уровнем в 2—3 раза. Обычно вначале возникает дрожь в мышцах головы и шеи, затем — туловища и, наконец, конечностей. Считается, что эффективность теплопродукции при дрожи в 2,5 раза выше, чем при произвольной деятельности.
Напомним, что сигналы от нейронов гипоталамуса идут через «центральный дрожательный путь» (тектум и красное ядро) к альфа-мотонейронам спинного мозга, откуда сигналы
идут к соответствующим мышцам, вызывая их активность. Курареподобные вещества (ми-орелаксанты) за счет блокады Н-холинорецепторов блокируют развитие терморегуляционного тонуса и холодовой дрожи. Это используется для создания искусственной гипотермии, а также учитывается при проведении оперативных вмешательств, при которых применяются миорелаксанты.
НЕСОКРАТИТЕЛЬНЫЙ ТЕРМОГЕНЕЗ
Он осуществляется путем повышения процессов окисления и снижения эффективности сопряжения окислительного фосфорилирования. Основным местом продукции тепла являются скелетные мышцы, печень, бурый жир. За счет этого вида термогенеза теплопродукция может возрасти в 3 раза.
В скелетных мышцах повышение несократительного термогенеза связано с уменьшением эффективности окислительного фосфорилирования за счет разобщения окисления и фосфорилирования, в печени—в основном, путем активации глшеогенолиза и последующего окисления глюкозы. Бурый жир повышает теплопродукцию за счет липолиза (под влиянием симпатических воздействий и адреналина). Бурый жир расположен в затылочной области, между лопатками, в средостении по ходу крупных сосудов, в подмышечных впадинах. В условиях покоя около 10% тепла образуется в буром жире. При охлаждении роль бурого жира резко повышается. При холодовой адаптации (жители арктических зон) возрастает масса бурого жира и ее вклад в общую теплопродукцию.
Регуляция процессов несократительного термогенеза осуществляется путем активации симпатической системы и продукции гормонов щитовидной железы (они разобщают окислительное фосфори-лирование) и мозгового слоя надпочечников.
МЕХАНИЗМЫ ТЕПЛООТДАЧИ
Основная масса тепла образуется во внутренних органах. Поэтому внутренний поток тепла для удаления из организма должен подойти к коже. Перенос тепла от внутренних органов осуществляется за счет теп-лопроведения (таким способом переносится менее 50% тепла) и конвекции, т. е. тепломассапереноса. Кровь в силу своей высокой теплоемкости является хорошим проводником тепла.
Рис. 84. Механизмы теплоотдачи и управление выделением тепла. К — кора, Кж—кожа, ЦГт—центры гипоталамуса, Сдц — сосудодвигательный центр, Пм — продолговатый мозг, См—спинной мозг, Гф—гипофиз,ТГ—тирео- тропный гормон, Жвс — железы внутренней секре ции, Гм:- гормоны, Птр—пищеварительный тракт, Кс — кровеносные сосуды, Л — легкие, а,б — поток аф ферентной импульсации. |
Второй поток тепла — это поток, направленный от кожи в среду. Его называют наружным потоком. Рассматривая механизмы теплоотдачи, обычно имеют ввиду именно этот поток.
Отдача тепла в среду осуществляется с помощью 4 основных механизмов: 1) испарения, 2) теплопро-ведения, 3) теплоизлучения, 4) кон-
векции. Вклад каждого механизма в теплоотдачу определяется состоянием среды и скоростью продукции тепла в организме. В условиях температурного комфорта основная масса тепла отдается за счет теплопроведения, теплоизлучения и конвекции и лишь 19—20% — с помощью испарения. При высокой температуре среды до 75—90% тепла'отдается за счет испарения.
Теплопроведенне — это способ отдачи тепла телу, которое непосредственно контактирует с телом человека. Чем ниже температура этого тела, чем выше температурный градиент, тем выше скорость потери тепла за счет этого механизма. Обычно этот способ отдачи тепла ограничен одеждой и воздушной прослойкой, которые являются хорошими изоляторами тепла, а также подкожным жировым слоем. Чем толще этот слой, тем меньше вероятность передачи тепла к холодному телу.
Теплоизлучение — отдача тепла с участков кожи, не прикрытых одеждой. Происходит путем длинноволнового инфракрасного излучения, поэтому такой вид теплоотдачи еще называют радиационной теплоотдачей. В условиях температурного комфорта за счет этого механизма отдается до 60% тепла. Эффективность теплоизлучения зависит от градиента температуры (чем он выше, тем больше тепла отдается), от площади, с которой происходит излучение, от числа объектов, находящихся в среде, которые поглощают инфракрасные лучи.
Конвекция. Воздух, соприкасающийся с кожей, нагревается и поднимается, его место занимает «холодная» порция воздуха и т. д. Таким способом — за счет тепломассапереноса отдается в условиях температурного комфорта до 15% тепла.
Во всех перечисленных механизмах большую роль играет кожный кровоток: когда его интенсивность возрастает за счет снижения тонуса ГМК артериол и закрытия артериове-ноэных шунтов — отдача тепла существенно возрастает. Этому также способствует увеличение объема циркулирующей крови: чем больше ОЦК, тем выше возйЬжность переноса тепла в среду. На холоде происходят противоположные процессы — уменьшается кожный кровоток, в том числе за счет прямого переброса артериальной крови из артерий в вены, минуя капилляры, уменьшается ОЦК, меняется и поведенческая реакция: человек или животное инстинктивно занимает позу «калачиком», т. к. в этом случае площадь отдачи тепла уменьшается на 35%, у животных к этому добавляется и реакция — «гусиная кожа» — подъем волос кожи (пилоэрекция), что повышает ячеистость накожного покрова и снижает возможность отдачи тепла.
На долю кистей рук приходится небольшая часть поверхности тела — всего 6%, но их кожей отдается до 60% тепла при помощи механизма сухой теплоотдачи (теплоизлучение, конвекция).
ИСПАРЕНИЕ
Отдача тепла происходит за счет траты энергии (0,58 ккал на 1 мл воды) на испарение воды. Различают два вида испарения, или перспирации: неощущаемую и ощущаемую перспирацию.
Неощущаемая перспирация — это испарение воды со слизистых дыхательных путей и воды, которая просачивается через эпителий кожного покрова (тканевой жидкости). За сутки через дыхательные пути испаряется в норме до 400 мл воды, т. е. отдается 400x0,58 ккал = 232 ккал/сутки. При необходимости эта величина может быть увеличена за счет так называемой тепловой одышки, которая обусловлена влиянием нейронов центра теплоотдачи на дыхательные нейроны ствола мозга.
В среднем за сутки через эпидермис просачивается около 240 мл воды. Следовательно, за счет этого отдается 240 х 0,58 ккал = 139 ккал/сутки. Эта величина, как правило, не зависит от процессов регуляции и различных факторов среды.
Оба вида неощущаемой перспирации за сутки позволяют отдать (400+240) х 0,58 = 371 ккал.
Ощущаемая перспирация, или отдача тепла путем испарения пота. В среднем за сутки при комфортной температуре среды выделяется 400—500 мл пота, следовательно, отдается до 300 ккал. Однако при необходимости объем потоотделения может возрасти до 12 л/сут-