Механизм действия белковых гормонов, катехоламинов, серотоннна, гистамвна.
Эти гормоны взаимодействуют с рецепторами, расположенными на поверхности клетки, а конечный эффект действия этих гормонов может быть — сокращение, усиление ферментных процессов, например, гликогенолиза, повышение синтеза белка, повышение секреции и т. д. Во всех этих случаях лежит процесс фосфорилирования белков-регуляторов, перенос фосфатных групп от АТФ к гидроксильным группам серина, треонина, тирозина, белка. Этот процесс внутри клетки осуществляется с участием ферментов-протеинкиназ. Протеинкиназы — это АТФ-фосфатрансферазы. Их много разновидностей, для каждого белка — своя протеинкиназа. Например, для фосфорилазы, участвующей в расщеплении гликогена, протеинкиназа носит название «киназа фосфорилазы».
В клетке протеинкиназы находятся в неактивном состоянии. Активация протеинкнназ осуществляется за счет гормонов, действующих на поверхностно расположенные рецепторы. При этом сигнал от рецептора (после взаимодействия гормона с этим рецептором) к протеинкиназе передается с участием специфического посредника, или вторичного мес-сенджера. В настоящее время выяснено, что таким мессенджером могут быть: а) цАМФ, б) ионы Са, в) диацилглицерин, г) какие-то другие факторы (вторичные посредники неизвестной природы). Таким образом, протеинкиназы могут быть цАМФ-зависимые, Са-зависи-мые, диацилглицерин-зависимые.
Известно, что в роли вторичного посредника цАМФ выступает при действии таких гормонов как АКТГ, ТТГ, ФСГ, ЛГ, хорионический гонадотропин, МСГ, АДГ, катехоламины (бета-адренорецепторный эффект), глюкагон, паратирин (паратгормон), кальцитошш, секретин, гонадотропин, тиролиберин, липотропин.
Группа гормонов, для которых мессенджером является кальций: окситоцин, вазопрес-син, гастрин, холециетокинин, ангиотензин, катехоломины (альфа-эффект).
Для некоторых гормонов пока не идентифицированы посредники; например, СТГ, про-лактин, хорионический соматомамматропин (плацентарный лактоген), соматостатин, инсулин, инсулиноподобные факторы роста и т. п.
Рассмотрим работу цАМФ как мессенджера:цАМФ (циклический аденозинмонофо-сфат) образуется в клетке под влиянием фермента аденилатциклазы из молекул АТФ,
АТФ -> цАМФ. Уровень цАМФ в клетке зависит от активности аденилатциклазы и от активности фермента, разрушающего цАМФ (фосфодиэстеразы). Гормоны, действующие за счет цАМФ, как правило, вызывают изменение активности аденилатциклазы. Этот фермент имеет регуляторную и каталитическую субъединицы. Регуляторная субъединица тем или иным образом связана с гормональным рецептором, например, за счет G-белка. При воздействии гормона происходит активация регуляторной субъединицы (в «покое» эта субъединица связана с гуаннзиндифосфатом, а под.влиянием гормона она связывается с гуани-зинтрифосфатом и потому активируется). В результате повышается активность каталитической субъединицы, которая расположена на внутренней стороне плазматической мембраны, и поэтому повышается содержание цАМФ. Это, в свою очередь, вызывает активацию протеинкиназы (точнее, цАМФ-зависимой протеинкнназы), что в дальнейшем вызывает фосфорилирование, которое приводит к конечному физиологическому эффекту, например, под влиянием АКТГ клетки надпочечников продуцируют в больших количествах глЮко-кортикоиды, а под влиянием адреналина в ГМК, содержащих бета-адренорецепторы, происходит активация кальциевого насоса и расслабление ГМК.
Итак: гормон + рецептор -> активация аденилатциклазы -> активация протеинкиназы -> фосфорилирование белка (например, АТФ-азы).
Мессенджер — ионы кальция. Под влиянием гормонов (например, окситоцина, АДГ, га-стрина) происходит изменение содержания в клетке ионов кальция. Это может происходить за счет повышения проницаемости мембраны клетки для ионов кальция или за счет освобождения свободных ионов кальция из внутриклеточных депо. В дальнейшем кальций может вызвать ряд процессов, например, повышение проницаемости мембраны для ионов кальция, натрия, может взаимодействовать с микротубулярно-ворсинчатой системой клетки и, наконец, может вызвать активацию протеинкиназ, зависимых от ионов кальция. Процесс активации протеинкиназ связан прежде всего со взаимодействием ионов кальция с ре-гуляторным белком клетки — кальмодулином. Это высокочувствительный по отношению к кальцию белок (наподобие тропонина С в мышцах), содержащий 148 аминокислот, имеющий 4 места связывания кальция. Все ядросодержашие клетки имеют в своем составе этот универсальный кальций-связывающий белок. В условиях «покоя» кальмодулин находится в неактивном состоянии и потому не способен оказывать свое регулирующее воздействие на ферменты, в том числе на протеинкиназы. В присутствии кальция происходит активация кальмодулнна, в результате чего активируются протеинкиназы, а в дальнейшем происходит фосфорилирование белков. Например, при взаимодействии адреналина с адренорецептора-ми (бета-АР) в клетках печени происходит активация гликогенолиза (расщепления гликогена до глюкозы). Этот процесс начинается под влиянием фосфорилазы А, которая в клетке находится в неактивном состоянии. Цикл событий здесь таков: адреналин + бета-АР ~Ь повышение внутриклеточной концентрации кальция -> активация кальмодулина -> активация киназы фосфорилазы (активация протеинкиназы) -> активация фосфорилазы В, превращение ее в активную форму — фосфорилазу А -> начало гликогенолиза.
В случае, когда имеет место другой процесс, последовательность событий такова: гормон + рецептор -> повышение уровня кальция в клетке -> активация кальмодулина -> активация протеинкиназы -> фосфорилирование белка-регулятора -> физиологический акт.
Мессенджер—диацнлглнцерин. В мембранах клетки имеются фосфолипиды, в частности фосфатидилинозитол — 4,5-бифосфат. При взаимодействии гормона с рецептором этот фосфолипид разрывается на два осколка: диацилглицернн и инозитолтрнфосфат. Оба этих осколка являются мессенджерами. В частности, диацилглицерин в дальнейшем активирует протеинкиназу, что приводит к фосфорилированию белков клетки и соответствующему физиологическому эффекту.
Другие мессенджеры. В последнее время ряд исследователей полагает, что в роли мессен-джеров могут выступать простагландины и их производные. Предполагается, что каскад реакций таков: рецептор + гормон -> активация фосфолипазы А2 -> разрушение фосфолипидов мембраны с образованием арахидоновой кислоты -> образование простагландинов типа ПГЕ, ПГФ, тромбоксанов, простациклинов, лейкотриенов -> физиологический эффект.
9. Физиология человека
АТФ -> цАМФ. Уровень цАМФ в клетке зависит от активности аденилатциклазы и от активности фермента, разрушающего цАМФ (фосфодиэстсразы). Гормоны, действующие за счет цАМФ, как правило, вызывают изменение активности аденилатциклазы. Этот фермент имеет регуляторную и каталитическую субъединицы. Регуляторная субъединица тем или иным образом связана с гормональным рецептором, например, за счет G-белка. При воздействии гормона происходит активация регуляторной субъединицы (в «покое» эта субъединица связана с гуаннзиндифосфатом, а под,влиянием гормона она связывается с гуани-зннтрифосфатом и потому активируется). В результате повышается активность каталитической субъединицы, которая расположена на внутренней стороне плазматической мембраны, и поэтому повышается содержание цАМФ. Это, в свою очередь, вызывает активацию протеинкиназы (точнее, цАМФ-зависимой протеинкиназы), что в дальнейшем вызывает фосфорилирование, которое приводит к конечному физиологическому эффекту, например, под влиянием АКТГ клетки надпочечников продуцируют в больших количествах глюко-кортикоиды, а под влиянием адреналина в ГМК, содержащих бета-адренорецепторы, происходит активация кальциевого насоса и расслабление ГМК.
Итак: гормон + рецептор -> активация аденилатциклазы -> активация протеинкиназы -> фосфорилирование белка (например, АТФ-азы).
Мессенджер — ионы кальция. Под влиянием гормонов (например, окситоцина, АДГ, га-стрина) происходит изменение содержания в клетке ионов кальция. Это может происходить за счет повышение проницаемости мембраны клетки для ионов кальция или за счет освобождения свободных ионов кальция из внутриклеточных депо. В дальнейшем кальций может вызвать ряд процессов, например, повышение проницаемости мембраны для ионов кальция, натрия, может взаимодействовать с микротубулярно-ворсинчатой системой клетки и, наконец, может вызвать активацию протеинкиназ, зависимых от ионов кальция. Процесс активации протеинкиназ связан прежде всего со взаимодействием ионов кальция с ре-гуляторным белком клетки — кальмодулином. Это высокочувствительный по отношению к кальцию белок (наподобие тропонина С в мышцах), содержащий 148 аминокислот, имеющий 4 места связывания кальция. Все ядросодержащие клетки имеют в своем составе этот универсальный кальций-связывающий белок. В условиях «покоя» кальмодулин находится в неактивном состоянии и потому не способен оказывать свое регулирующее воздействие на ферменты, в том числе на протеинкиназы. В присутствии кальция происходит активация кальмодулина, в результате чего активируются протеинкиназы, а в дальнейшем происходит фосфорилирование белков. Например, при взаимодействии адреналина с адренорецептора-ми (бета-АР) в клетках печени происходит активация гликогенолиза (расщепления гликогена до глюкозы). Этот процесс начинается под влиянием фосфорилазы А, которая в клетке находится в неактивном состоянии. Цикл событий здесь таков: адреналин + бета-АР "^ повышение внутриклеточной концентрации кальция -> активация кальмодулина -> активация киназы фосфорилазы (активация протеинкиназы) -> активация фосфорилазы В, превращение ее в активную форму — фосфорилазу А -> начало гликогенолиза.
В случае, когда имеет место другой процесс, последовательность событий такова: гормон + рецептор -> повышение уровня кальция в клетке -> активация кальмодулина -> активация протеинкиназы -> фосфорилирование белка-регулятора -> физиологический акт.
Мессенджер—диацнлглицернн. В мембранах клетки имеются фосфолипиды, в частности фосфатидилинозитол — 4,5-бифосфат. При взаимодействии гормона с рецептором этот фосфолипид разрывается на два осколка: диацилглицернн и инознтолтрнфосфат. Оба этих осколка являются мессенджерами. В частности, диацилглицерин в дальнейшем активирует протеинкиназу, что приводит к фосфорилированию белков клетки и соответствующему физиологическому эффекту.
Другие мессенджеры. В последнее время ряд исследователей полагает, что в роли мессен-джеров могут выступать простагландины и их производные. Предполагается, что каскад реакций таков: рецептор + гормон -> активация фосфолипазы А2 -> разрушение фосфолилидов мембраны с образованием арахидоновой кислоты -> образование простагландинов типа ПГЕ, ПГФ, тромбоксанов, простациклинов, лейкотриенов -> физиологический эффект.
9. Физиология человека
РЕГУЛЯЦИЯ СЕКРЕЦИИ ГОРМОНОВ
Существуют различные способы эндогенной регуляции секреции гормонов.
1. Гормональная регуляция.В гипоталамусе вырабатываются 6 либеринов и 3 статина
(кортиколиберин, тиролиберин, гонадолиберин, меланолиберин, пролактолиберин, сома-
толнберин, соматостатин, меланостатин, пролактостатнн), которые через портальную сис
тему гипофиза из гипоталамуса попадают в аденогипофиз и усиливают (либерины) или тор
мозят (статины) продукцию соответствующих гормонов. Гормоны аденогипофиза — АКТГ,
ЛГ, СТГ, ТТГ — в свою очередь вызывают изменение продукции гормонов. Например, ТТТ
повышает продукцию тиреоидных гормонов. В эпифизе вырабатывается мелатонин, кото
рый модулирует функцию надпочечников, щитовидной железы, половых желез.
2. Регуляция продукции гормона по типу обратной отрицательной связи.Продукция тире
оидных гормонов щитовидной железы регулируется тиролиберином гипоталамуса, воздей
ствующего на аденогипофиз, продуцирующий ТТГ, который повышает продукцию тиреоид
ных гормонов. Выйдя в кровь, Т3 и Т4 воздействуют на гипоталамус и аденогипофиз и тор
мозят (если уровень тиреоидных гормонов высокий) продукцию тиролибернна и ТТГ.
Существует и вариант положительной обратной связи: например, повышение продукции эстрогенов вызывает рост продукции ЛГ в гипофизе. В целом принцип обратной связи получил название принцип «плюс-минус-взаимодействие» (по М. М. Завадскому).
3. Регуляцияс участием структур ЦНС.Симпатическая и парасимпатическая нервные
системы вызывают изменение в продукции гормонов. Например, при активации симпатиче
ской нервной системы повышается продукция адреналина в мозговом слое надпочечников.
Структуры гипоталамуса (и все, что влияет на них) вызывают изменение в продукции гор
монов. Например, активность супрахиазматического ядра гипоталамуса вместе сактивнос
тью эпифиза обеспечивают существование биологических часов, в том числе — для гормо
нальной секреции. Например, известно, что продукция АКТГ максимальна в период с 6 до
8 час. и минимальна в вечерние часы — с 19 до 2—3 час. Эмоциональные, психические
воздействия через структуры лимбической системы, через гипоталамические образования
способны существенно влиять на деятельность клеток, продуцирующих гормоны.
Глава 11
ЧАСТНАЯ ФИЗИОЛОГИЯ ЖЕЛЕЗ ВНУТРЕННЕЙ
СЕКРЕЦИИ И БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ
(ЧАСТНАЯ ЭНДОКРИНОЛОГИЯ)