Восприятие интенсивности звука

Вспомним, что наше зрение более чувствительно к одним длинам волн, чем к другим. В слуховом восприятии есть аналогичное явление. Человек более чувствителен к звукам в середине частотного диапазона, чем к звукам с частотой ближе к его краям. Это показано на рис. 4.26, где приведена зависимость абсолютного порога интенсивности звука от частоты. У многих людей слух в той или иной степени ослаблен, и порог у них выше того, что показан на рис. 4.26.

Восприятие интенсивности звука - student2.ru

Рис. 4.26. Абсолютный порог для слуха.Нижняя кривая показывает абсолютную пороговую интенсивность для различных частот. Наибольшая чувствительность наблюдается в окрестностях частоты 1000 герц. Верхняя кривая показывает болевой порог (данные аппроксимированы по различным источникам).

Есть два основных варианта недостаточности слуха. При одном из них пороги повышаются примерно в равной степени для всех частот в результате плохой проводимости среднего уха (потеря проводимости). В другом случае потери слуха порог повышается в неравной степени, причем более всего он повышается на высоких частотах. Такая ситуация обычно является следствием повреждения внутреннего уха и часто связана с частичным разрушением волосковых клеток (потеря нервной чувствительности). Волосковые клетки после разрушения не восстанавливаются. Потеря нервной чувствительности возникает у многих пожилых людей. Вот почему им часто трудно расслышать высокие звуки. Однако потеря нервной чувствительности не происходит исключительно у пожилых. Она возникает и у молодых, если на них воздействует чрезмерно громкий звук. Необратимой потерей слуха обычно страдают рок-музыканты, работники взлетно-посадочных полос в аэропортах и работающие с отбойным молотком. Например, у Пита Таунзенда, известного гитариста из группы «The Who», возникло серьезное ослабление слуха из-за того, что на него постоянно воздействовала громкая рок-музыка; с тех пор он предупреждал многих молодых людей об этой опасности.

Естественно предположить, что воспринимаемая интенсивность звука одинакова для обоих ушей, но на самом деле здесь есть тонкие различия. Если звук приходит справа, то для правого уха его слышимость будет больше, чем для левого; это происходит потому, что голова образует «звуковую тень», которая снижает интенсивность звука, доходящего до дальнего уха. Но это вовсе не ограничение слуховых возможностей, поскольку человек использует величину междуушного расхождения в интенсивности для локализации направления звука (это как если бы мы рассуждали, что «если интенсивность звука в моем правом ухе больше, чем в левом, должно быть, звук пришел справа»). Аналогично, звук, приходящий с правой стороны, поступает в правое ухо на долю секунды раньше, чем в левое (и наоборот, если звук пришел слева). Человек также использует это междуушное расхождение во времени, чтобы локализовать звук («если звук сначала пришел в мое правое ухо, значит, он пришел справа»).

Восприятие высоты звука

Высота и частота.Когда мы слышим чистый тон, то воспринимаем не только его громкость, но и высоту. Подобно тому как цвет — главное качество света, так и высота — главное качество звука, ранжированного по шкале от низкого до высокого. И подобно тому как цвет определяется частотой света, высота определяется частотой звука. При возрастании частоты высота увеличивается. Как и длину световой волны, частоту звука человек различает очень хорошо. Молодой взрослый может слышать частоты в диапазоне от 20 до 20 000 герц (колебаний в секунду), причем ЕЗР составляет менее 1 герца при частоте 100 герц и возрастает до 100 герц при 10 килогерцах.

Однако в слуховом восприятии нет ничего похожего на смешение цветов. Когда две и более частот звучат одновременно, можно слышать высоту каждой частоты при условии, что они достаточно различаются. Если частоты различаются несильно, ощущение будет более сложным, но все равно звук не будет похож на один чистый тон. При изучении цветового восприятия обнаружение того факта, что смешение трех цветных источников света дает ощущение одного цвета, привело к идее о трех типах рецепторов. Отсутствие аналогичного явления в слуховом восприятии позволяет предположить, что если есть рецепторы, настроенные на различные частоты, то типов таких рецепторов должно быть множество.

Теории восприятия высоты звука. Как и в случае цветового зрения, для объяснения того, как частота кодируется ухом в высоту звука, были предложены две теории.

Первая теория была создана британским физиком Резерфордом в 1886 году. Он предположил, что: а) звуковая волна заставляет вибрировать всю базилярную мембрану и частота вибраций соответствует частоте звука; б) частота вибраций мембраны задает частоту нервных импульсов, передаваемых по слуховому нерву. Так, тон частотой 1000 герц заставляет базилярную мембрану вибрировать 1000 раз в секунду, в результате чего волокна слухового нерва разряжаются с частотой 1000 импульсов в секунду, а мозг интерпретирует это как определенную высоту. Поскольку в этой теории предполагается, что высота зависит от изменений звука во времени, ее назвали временной теорией (ее называют также частотной теорией).

Гипотеза Резерфорда вскоре встретилась с серьезными проблемами. Было доказано, что нервные волокна могут передавать не более 1000 импульсов в секунду, и тогда неясно, как человек воспринимает высоту тона с частотой более 1000 герц. Вивер (Weaver, 1949) предложил способ спасения временной теории. Он предположил, что частоты выше 1000 герц кодируются различными группами нервных волокон, каждая из которых активируется в несколько разном темпе. Если, например, одна группа нейронов выдает 1000 импульсов в секунду, а затем 1 миллисекунду спустя другая группа нейронов начинает выдавать 1000 импульсов в секунду, то комбинация импульсов этих двух групп даст 2000 импульсов в секунду. Эту версию временной теории подкрепило открытие, что паттерн нервных импульсов в слуховом нерве повторяет форму волны стимульного тона, несмотря на то, что отдельные клетки реагируют не на каждое колебание (Rose et al., 1967).

Однако способность нервных волокон отслеживать форму волны обрывается примерно на частоте 4000 герц; тем не менее мы можем слышать высоту звука, содержащего гораздо более высокие частоты. Отсюда следует, что должно существовать другое средство кодирования высотного качества звука, по крайней мере на высоких частотах.

Другая теория восприятия высоты звука относится к 1683 году, когда французский анатом Жозеф Гишар Дювернье предположил, что частота кодируется высотой звука механически, путем резонанса (Green & Wier, 1984). Чтобы разобраться в этом предположении, полезно сначала рассмотреть пример резонанса. Когда ударяют по камертону, который находится рядом с пианино, струна пианино, настроенная на частоту камертона, начинает колебаться. Если мы говорим, что ухо работает по тому же принципу, это значит, что в нем есть некая структура, сходная по конструкции со струнным инструментом, причем различные ее части настроены на различные частоты, так что когда на ухо предъявляется некоторая частота, соответствующая часть этой структуры начинает колебаться. Эта идея была в общем правильной: такой структурой оказалась базилярная мембрана.

В XIX веке Герман фон Гельмгольц, исходя из гипотезы резонанса, предложил для объяснения восприятия высоты теорию локальности. Согласно этой теории, каждый конкретный участок базилярной мембраны, когда он начинает реагировать, создает ощущение определенной высоты тона. Предполагаемое множество участков на мембране согласуется с фактом существования множества рецепторов высоты. Заметьте, что теория локальности не означает, что мы слышим звук базилярной мембраной; просто от того, какие участки мембраны вибрируют, в наибольшей степени зависит, какую высоту мы услышим. Это пример органа чувства, в котором кодирование качества осуществляется путем «включения» тех или иных нервных волокон.

Как именно колеблется базилярная мембрана, не было известно до 1940 года, когда Георг фон Бекеши измерил ее движения при помощи маленьких отверстий, просверленных в улитках морских свинок и человеческих трупов. Учитывая результаты Бекеши, потребовалось модифицировать теорию локальности; базилярная мембрана вела себя не как пианино с раздельными струнами, а как простыня, которую встряхнули за один конец. В частности, Бекеши показал, что при большинстве частот вся базилярная мембрана приходит в движение, но место наиболее интенсивного движения зависит от конкретной частоты звучания. Высокие частоты вызывают вибрацию в ближнем конце базилярной мембраны; по мере повышения частоты паттерн вибрации сдвигается к овальному окошечку (Bekesy, 1960). За это и другие исследования слуха Бекеши получил в 1961 году Нобелевскую премию.

Как и временные теории, теория локальности объясняет многие, но не все явления восприятия высоты звука. Основные затруднения у теории локальности связаны с тонами низких частот. При частотах ниже 50 герц все части базилярной мембраны вибрируют примерно одинаково. Это значит, что все рецепторы активируются в равной степени, из чего следует, что у нас нет способа различения частот ниже 50 герц. На самом же деле мы можем различать частоту всего в 20 герц.

Таким образом, теории локальности затрудняются объяснить восприятие низкочастотных звуков, а временные теории — восприятие высоких частот. Все это навело на мысль, что восприятие высоты звука определяется как временными паттернами, так и паттернами локализации, причем временная теория объясняет восприятие низких частот, а теория локальности — восприятие высоких частот. Ясно, однако, что там, где один механизм отступает, начинает преобладать другой. На самом деле не исключено, что частоты от 1000 до 5000 герц обслуживаются обоими механизмами (Coren, Ward & Enns, 1999).

Поскольку наши уши и глаза играют столь важную роль в нашей повседневной жизни, были предприняты значительные усилия, направленные на то, чтобы заменить их на искусственные у индивидуумов, страдающих неизлечимыми дефектами этих органов. Некоторые из этих усилий описаны в рубрике «На переднем крае психологических исследований».

Другие ощущения

По сравнению со зрением и слухом, другим ощущениям недостает тех богатых функциональных возможностей, из-за которых зрение и слух называют «высшими чувствами». И все же эти другие чувства жизненно важны. Например, ощущение запаха (обоняние) является одним из наиболее примитивных и наиболее важных из этих ощущений. Возможно, это связано с тем, что запах проникает в мозг по более прямому маршруту, чем любые другие ощущения. Рецепторы, расположенные в носовой полости, связаны с мозгом без посредства синапсов. Более того, в отличие от зрительных и слуховых рецепторов, обонятельные рецепторы испытывают непосредственное воздействие окружающей среды — они находятся прямо в носовой полости и не имеют перед собой защитной оболочки. (Тогда как зрительные рецепторы расположены позади роговой оболочки, а слуховые защищены наружным и средним ухом.) Поскольку запах с очевидностью является важной сенсорной модальностью, мы начнем наше обсуждение других ощущений с ощущения запаха, называемого также обонянием.

Обоняние

Чувство запаха, или обоняние, помогает нашему выживанию: оно необходимо для обнаружения испорченной пищи или незакрытого газа, а потеря обоняния может привести к притуплению аппетита. И все же для многих других биологических видов обоняние еще важнее. Поэтому неудивительно, что у них обонянию отведена большая часть коры, чем у нас. У рыб обонятельная кора почти целиком охватывает полушария мозга, у собак — примерно одну треть, у человека — всего одну двадцатую часть. В этом отражены межвидовые различия в обонятельной чувствительности. Пользуясь преимуществом превосходной обонятельной способности собак, Почтовая служба Соединенных Штатов и Таможенное бюро готовят их для проверки невскрытых упаковок на героин. А специально натренированные полицейские собаки могут разнюхать спрятанную взрывчатку.

Поскольку обоняние у других видов развито столь хорошо, они часто используют его как ведущее средство коммуникации. Насекомые и некоторые высшие животные выделяют химические вещества, известные как феромоны и распространяющиеся по воздуху, так чтобы их могли унюхать другие представители этого же вида. Например, самка мотылька может выделять настолько сильный феромон, что самцов влечет к ней с расстояния в несколько миль. Установлено, что самец мотылька реагирует именно на феромон, а не на вид самки; его будет влечь к самке, находящейся в контейнере из проволочной сетки, несмотря на то, что ее вид недоступен, но не к самке в стеклянном контейнере, где ее хорошо видно, но путь для запаха блокирован.

Насекомые пользуются запахом, чтобы сообщать не только о «любви», но и о смерти. Когда муравей умирает, химические вещества, образующиеся при разложении его тела, стимулируют других муравьев отнести его тело на мусорную кучу снаружи гнезда. Если живого муравья пропитать этим феромоном разложения, другие муравьи тут же относят его на мусорную кучу. Когда он возвращается в гнездо, его уносят опять. Эти попытки преждевременных похорон продолжаются, пока «запах смерти» не выдохнется (Wilson, 1963).

Остались ли у нас, людей, пережитки этой примитивной системы общения? Эксперименты показывают, что как минимум мы можем отличать по запаху себя от других и мужчин от женщин. В одном из исследований испытуемые носили майку в течение 24 часов, не принимая душ и не пользуясь дезодорантом. Затем они сдавали майки экспериментатору. Каждому испытуемому экспериментатор предъявлял для обнюхивания три майки: собственную майку испытуемого, одну мужскую и одну женскую.

Основываясь только на запахе, большинство испытуемых обычно могли отличить свою собственную майку, а также определить, какую из двух остальных носил мужчина, а какую — женщина (Russel, 1976; Schleidt, Hold & Attili, 1981). Другие исследования показывают, что по запаху мы можем определять и более тонкие вещи. Между женщинами, которые живут или работают вместе, видимо, происходит обмен информацией посредством запаха относительно их менструального цикла, так что со временем их менструальные циклы синхронизируются и начинаются в одно время (Russel, Switz & Thompson, 1980; McClintock, 1971).

Система обоняния.Стимулом для запаха являются испускаемые веществом летучие молекулы. Молекулы выходят из вещества, проносятся по воздуху и входят в носовой проход (рис. 4.27). Этим молекулам предстоит также раствориться в жире, поскольку рецепторы запаха покрыты жироподобным веществом.

Восприятие интенсивности звука - student2.ru

Рис. 4.27. Рецепторы обоняния.а) Деталь рецептора, находящегося в промежутках между многочисленными поддерживающими клетками. б) Расположение обонятельных рецепторов в носовой полости.

Система обоняния состоит из рецепторов, расположенных в носовом проходе, соответствующих участков мозга и соединяющих их проводящих нервных путей. Рецепторы обоняния расположены глубоко в носовой полости. Когда реснички (образования, похожие на волоски) этих рецепторов соприкасаются с молекулами пахучего вещества, появляется электрический импульс; таков процесс превращения. Этот импульс передается по нервным волокнам в обонятельную луковицу — участок мозга, находящийся как раз под передними долями. В свою очередь, обонятельная луковица соединяется с обонятельной корой, расположенной с внутренней стороны височных долей. (Любопытно, что существует прямая связь между обонятельной луковицей и частью коры, которая, как известно, участвует в формировании следов долговременной памяти; возможно, с этим связано представление, что характерный запах может сильно способствовать воспроизведению старых воспоминаний.)

Ощущение интенсивности и качества.Чувствительность человека к интенсивности запаха в сильнейшей степени зависит от того, что это за вещество. Абсолютный порог может составлять всего 1 часть вещества на 50 миллиардов частей воздуха. Тем не менее, как уже отмечалось, чувствительность человека к запахам значительно меньше, чем у других видов. Собаки, например, могут обнаруживать вещества с концентрацией в 100 раз ниже, чем концентрация, которую способен обнаружить человек (Marshall, Blumer & Moulton, 1981). Относительно слабая чувствительность человека к запахам объясняется не тем, что у него чувствительность обонятельных рецепторов меньше, а тем, что их самих меньше: примерно 10 миллионов у человека против 1 миллиарда у собак.

<Рис. Острое обоняние собаки — хорошее подспорье закону, что наглядно демонстрирует этот пес, отыскивающий наркотики.>

Хотя на запах мы полагаемся меньше, чем на другие модальности, мы способны ощущать много различных качеств запаха. Оценки расходятся, но, по-видимому, здоровый человек способен различить от 10 000 до 40 000 различных запахов, причем у женщин этот показатель в целом лучше (Cain, 1988). У профессиональных парфюмеров и дегустаторов виски результаты еще выше — они различают до 100 000 запахов (Dobb, 1989). Далее, нам кое-что известно о том, как обонятельная система кодирует качество запахов на биологическом уровне. Ситуация здесь совершенно отлична от кодирования цвета в зрении, где достаточно всего трех типов рецепторов. В обонянии, видимо, участвует множество типов рецепторов; по оценкам недавних работ, 1000 типов обонятельных рецепторов не будет преувеличением (Buck & Axel, 1991). Рецепторы каждого типа кодируют не один конкретный запах, они могут реагировать на много различных запахов (Matthews, 1972). Так что даже в этой богатой рецепторами сенсорной модальности качество запаха может быть частично закодировано в паттерне нервной активности.

Вкус

Вкус часто связывают с теми ощущениями, которые на самом деле к нему не относятся. Мы говорим, что еда «вкусная», но если запах устранить сильным замораживанием, ощущения от обеда тускнеют и тогда может быть трудно отличить красное вино от уксуса. И все же вкус (или густация) имеет самостоятельную ценность. Даже на сильном холоде можно отличить соленую пищу от несоленой.

В дальнейшем мы будем говорить о вкусе определенных веществ, хотя заметим, что вкушаемое вещество не является единственным фактором, определяющим его вкус. Наше генетическое устройство и опыт также влияют на вкус. Например, у всех людей разная чувствительность к горькому вкусу кофеина или сахарина, и это различие, видимо, предопределено генетически (Bartoshuk, 1979). В качестве другого примера молено привести жителей провинции Карнатака в Индии, которые едят много кислой пищи и находят вкус лимонной кислоты или хинина приятным; большинство из нас испытывает обратные ощущения. Это частное различие вкусов людей, видимо, определяется опытом, поскольку индусы, выросшие в западной стране, считают вкус лимонной кислоты и хинина неприятным (Moskowitz et al., 1975).

Вкусовая система.Стимулом для вкуса служит вещество, растворенное в слюне — жидкости, похожей на соленую воду. Вкусовая система содержит рецепторы, расположенные на языке, в гортани и на нёбе; в эту систему входят также соответствующие участки мозга и проводящие нервные пути. В дальнейшем мы сосредоточимся на рецепторах языка. Эти вкусовые рецепторы расположены пучками, которые называются вкусовыми почками и находятся на шишечках языка и вокруг рта. На концах вкусовых почек имеются короткие, похожие на волоски образования, которые выходят наружу и контактируют с растворами во рту. В результате этого контакта возникает электрический импульс; таков процесс превращения. Электрический импульс затем поступает в мозг.

Ощущение интенсивности и качества.Чувствительность к вкусовым стимулам в разных местах языка различна. Хотя почти каждое место языка (кроме его центра) способно детектировать любое вещество, разные вкусы лучше всего детектируются разными его участками. Передняя часть языка имеет самую высокую чувствительность к соленому и сладкому; кислое лучше ощущается по его бокам, а горькое — на мягком нёбе (рис. 4.28). Участок в центре языка нечувствителен ко вкусу (чтобы класть туда невкусные таблетки). Хотя абсолютный порог вкуса в общем очень низкий, ЕЗР интенсивности вкуса относительно высокое (постоянная Вебера обычно составляет около 0,2). Это значит, что если вы увеличиваете дозу специй, добавляемых в блюдо, то добавка должна составлять не менее 20% — или вы не почувствуете разницу.

Восприятие интенсивности звука - student2.ru

Рис. 4.28. Вкусовые зоны.Хотя любой участок языка (кроме его центра) детектирует почти всякое вещество, чувствительность к разным вкусам на разных его местах неодинакова. Так что зона, помеченная как «сладкое», наиболее чувствительна к сладкому.

Проведенные недавно исследования позволяют предположить, что «языковые карты», подобные той, что изображена на рис. 4.28, возможно, являются чересчур упрощенными, так как они предполагают, что если бы нервы, ведущие к определенным участкам языка, были перерезаны, ощущение вкуса оказалось бы утрачено. Однако этого не происходит, потому что вкусовые нервы оказывают друг на друга тормозящее воздействие. Повреждение одного нерва лишает его способности оказывать тормозящее воздействие на другие; таким образом, если вы перережете нервы, идущие к определенному участку, вы также уменьшите тормозящее воздействие, и в результате это не окажет существенного влияния на ваши вкусовые ощущения в повседневной жизни (Bartoshuk, 1993).

<Рис. Люди различаются по своей восприимчивости к вкусовым ощущениям. Некоторые люди, как этот дегустатор кофе, способны ощущать крайне тонкие различия во вкусе определенных веществ.>

Для описания вкуса существует общепринятая терминология. Всякий вкус можно описать одним из четырех основных качеств или их комбинацией: сладкий, кислый, соленый и горький (McBurney, 1978). Эти четыре вкуса лучше всего представлены сахарозой (сладкий), соляной кислотой (кислый), поваренной солью (соленый) и хинином (горький). Когда испытуемых просят описать вкус различных веществ при помощи четырех основных видов вкуса, у них не возникает трудностей; если даже им дают возможность использовать для описания дополнительные названия качеств по своему выбору, они склонны ограничиваться этими четырьмя (Goldstein, 1989).

Для кодирования вкуса вкусовая система использует как активацию специфических нервных волокон, так и паттерны активации совокупности нервных волокон. Существует четыре типа нервных волокон — соответственно четырем основным вкусам. Хотя каждый тип волокна реагирует в некоторой степени на все четыре основных вкуса, лучше всего он реагирует только на один из них. Следовательно, имеет смысл говорить о «соленых волокнах», активность которых сигнализирует мозгу о наличии соленого вкуса. Итак, существует хорошее соответствие между субъективным ощущением вкуса и его нервным кодом.

Давление и температура

Осязание традиционно считали отдельным неделимым чувством. В настоящее время принято считать, что в него входят три различных вида кожных ощущений, одно из которых является реакцией на давление, другое — на температуру, а третье — на боль. В этом разделе мы кратко рассмотрим ощущения давления и температуры, а в следующем — чувство боли.

Давление.Стимулом для ощущения давления служит физическое давление на кожу. Мы не осознаем постоянного давления на все тело (например, давления воздуха), но можем различать колебания давления на поверхности тела. Некоторые части тела более сильно ощущают интенсивность давления, некоторые — менее; наиболее чувствительны к давлению губы, нос и щеки, наименее чувствителен большой палец ноги. Эти различия тесно связаны с количеством рецепторов давления на каждом из этих участков тела. На чувствительных местах мы можем обнаруживать силу давления всего в 5 мг, приложенных к маленькому участку. Однако, как и другие органы чувств, система давления подвержена значительному адаптационному эффекту. Если вы несколько минут подержите руку своей подружки без движения, то потеряете чувствительность и перестанете ощущать ее руку.

До сих пор мы говорили о пассивных ощущениях давления, возникающих, когда кто-либо касается нас. А что происходит, когда мы активно исследуем окружение, т. е. когда мы сами осуществляем касание? Такое активное осязание сопровождается субъективными переживаниями, отличающимися от их пассивного варианта, и включает в себя не только чувство давления, но и двигательные ощущения. С помощью одного только активного осязания человек может легко опознавать знакомые объекты (Klatzky, Lederman & Metzger, 1985). Мы редко пользуемся активным осязанием для идентификации многих объектов, но все же прибегаем к нему для распознавания монет, ключей и другой мелочи, которую мы держим у себя в карманах и кошельках.

Температура.Стимулом для температурных ощущений является температура нашей кожи. Рецепторами служат нейроны, чьи свободные нервные окончания расположены непосредственно под кожей. На этапе превращения рецепторы холода генерируют нервный импульс, когда температура кожи падает, а рецепторы тепла генерируют импульс, когда температура кожи повышается (Duclauz & Kenshalo, 1980; Hensel, 1973). Следовательно, различные качества температуры могут кодироваться в первую очередь путем активации определенных рецепторов (подобно кодированию высоты звука в слуховом восприятии). Однако такая специфичность нервной реакции имеет свои ограничения. Рецепторы холода реагируют не только на низкие температуры, но и на очень высокие (выше 45 °С). Следовательно, очень горячий стимул активирует и рецепторы тепла, и рецепторы холода, что в конечном счете вызывает ощущение горячего.

Поскольку поддержание температуры тела — решающий фактор выживания, важно, чтобы мы могли чувствовать небольшие изменения температуры кожи. При нормальной температуре кожи человек может обнаружить потепление всего на 0,4 градуса или похолодание всего на 0,15 градусов (Kenshalo, Nafe & Brooks, 1961). Температурное чувство человека полностью адаптируется к умеренным изменениям температуры, так что через несколько минут стимул уже не ощущается ни как холодный, ни как теплый. Такой адаптацией объясняются сильные расхождения во мнениях о температуре воды в бассейне между теми, кто в нем уже какое-то время побыл, и теми, кто только начал болтать ногами в воде.

<Рис. После пребывания какое-то время в бассейне ощущение температуры адаптируется к ее изменению. Но когда мы сначала болтаем ногами в воде, то обнаруживаем, что вода холоднее.>

Боль

Ни одно другое чувство не овладевает настолько нашим вниманием, как боль. Испытывая другие ощущения, мы часто пресыщаемся ими, но ощущение боли трудно игнорировать. И все-таки, несмотря на весь причиняемый ею дискомфорт, надо признать, что не будь чувства боли, мы подвергались бы большому риску. Детям трудно было бы научиться не трогать горячую печь или перестать жевать свой язык. На самом деле есть люди, родившиеся с редким генетическим нарушением, из-за которого они нечувствительны к боли. Как правило, они умирают молодыми вследствие порчи тканей организма и ран, которых можно было бы избежать, будь у них чувство боли.

Болевая система.Всякий раздражитель, достаточно сильный, чтобы вызвать повреждение тканей, является стимулом боли. Это может быть давление, температура, удар электрическим током или едкие химикалии. Эффект этого стимула достигается посредством высвобождения содержащихся в коже химических веществ, которые в свою очередь стимулируют различные рецепторы с высоким порогом возбуждения (этап превращения). Такими рецепторами являются нейроны с особыми свободными нервными окончаниями; известно несколько таких рецепторов (Brown & Deffenbacher, 1979).

Что касается вариаций качества боли, то наиболее важное различие относится к двум ее состояниям: тому, которое мы чувствуем непосредственно в момент получения раны (фазическая боль), и тому, которое переживается после ранения (тоническая боль). Фазическая боль — это обычно резкая непосредственная боль, непродолжительная по длительности (ее интенсивность быстро растет и падает), а тоническая боль, как правило, тупая и длится долго.

Например, если вам случится вывихнуть себе лодыжку, то вы тут же почувствуете резкую волнообразную (фазическую) боль, но чуть погодя вы начнете чувствовать устойчивую (тоническую) боль, вызванную распуханием. Эти два вида боли передаются двумя различными нервными путями, ведущими к различным участкам коры мозга (Melzak, 1990).

Внестимульные детерминанты боли. На интенсивность и качество боли больше, чем на любое другое ощущение, влияют факторы иные, чем непосредственный стимул. К этим факторам относятся культурная принадлежность человека, его ожидания и предшествующий опыт. Поразительным примером культурного влияния служит то, что в некоторых незападных обществах существуют ритуалы, кажущиеся впервые столкнувшемуся с ними западному человеку невыносимо болезненными. К таковым относится церемония подвешивания на крюках, практикуемая в некоторых районах Индии:

«Эта церемония ведет начало от древнего обычая, в котором выбирали члена социальной группы, чтобы он представлял собой силу богов. Роль избранного (или "священника") заключалась в том, чтобы в определенный период года благословить детей и урожай в ряде соседствующих деревень. В этом ритуале примечательно то, что по обеим сторонам спины этого человека под кожей и мышцами продеваются стальные крюки, привязанные крепкими веревками к верхушке специальной телеги (см. рис. 4.29).

Восприятие интенсивности звука - student2.ru

Рис. 4.29. Культура и боль.Справа: два стальных крюка в спине у священника в индийской церемонии висения на крюке. Слева: священник висит на веревках, пока телега везет его от деревни к деревне. Когда он благословляет деревенских детей и урожай, он свободно повисает на крюках в своей спине (по: Kosambi, 1967).

Телега затем ездит от деревни к деревне. Обычно, пока телега переезжает, этот человек висит на веревках. Но в кульминационный момент церемонии в каждой деревне он свободно повисает только на крюках, вонзенных ему в спину, чтобы благословить детей и урожай. Поразительно, но нет никаких признаков, что во время ритуала этот человек испытывает боль; скорее он пребывает в "состоянии экзальтации". Когда потом крюки удаляют, раны быстро заживают без всякого лечения, если не считать прикладывания к ним древесной золы. Две недели спустя шрамы на его спине едва различимы» (Melzack, 1973).

Очевидно, боль — функция не только сенсорных рецепторов, но и психики.

Феномены, подобные приведенному выше, послужили основой для создания теории управляемых ворот для боли (Melzak & Wall, 1982, 1988). Согласно этой теории, для возникновения ощущения боли нужны не только активация болевых рецепторов в коже, но и чтобы в спинном мозге были открыты «нервные ворота», позволяющие сигналам от болевых рецепторов проходить в мозг (эти ворота закрываются, когда активируются критические волокна спинного мозга). Поскольку нервные ворота можно закрыть сигналом, посланным из коры, воспринимаемую интенсивность боли можно снизить мысленным усилием, как в церемонии висения на крюке. Но что это такое — «нервные ворота»? Видимо, они имеют отношение к участку среднего мозга, который называется серым веществом вокруг сильвиева водопровода (сокращенно СВСВ); нейроны СВСВ соединены с другими нейронами, которые тормозят клетки, обычно передающие болевые сигналы от болевых рецепторов (Jesell & Kelly, 1991). Поэтому когда нейроны СВСВ активны, ворота закрыты; когда нейроны СВСВ неактивны, ворота открыты.

Любопытно, что СВСВ — это основное место, где сильные болеутоляющие средства, такие как морфин, воздействуют на обработку нервных сигналов. Известно, что морфин увеличивает нервную активность СВСВ, что, как мы только что видели, приводит к закрытию нервных ворот. Значит, хорошо известное анальгетическое действие морфина согласуется с теорией управляемых ворот. Кроме того, в организме человека вырабатываются определенные вещества, которые называются эндорфинами и действуют аналогично морфину, уменьшая боль; полагают, что действие этих веществ также связано с воздействием на СВСВ и способствует закрытию нервных ворот.

Есть и другие удивительные явления, согласующиеся с теорией управляемых ворот. Одно из них называется стимулогенной аналгезией, при которой стимуляция СВСВ оказывает анестетическое действие. Используя в качестве анестезии только стимуляцию СВСВ, удавалось провести операцию на брюшной полости крысы, причем крыса не подавала признаков боли (Reynolds, 1969). Смягченный вариант этого явления нам всем хорошо знаком: потирание больного участка ослабляет боль, предположительно потому, что стимуляция давлением закрывает нервные ворота. Со стимулогенной аналгезией связано явление уменьшения боли путем акупунктуры. Акупунктура — разработанная в Китае процедура лечения, при которой в критические точки кожи вставляют иглы; сообщалось, что поворачивая эти иглы, можно полностью устранить боль, облегчив возможность проведения серьезной операции у пациента, находящегося в сознании (рис. 4.30). Можно предположить, что иглы стимулируют нервные волокна, приводя к закрытию болевых ворот.

Восприятие интенсивности звука - student2.ru

Рис. 4.30. Типичная карта акупунктуры.Числами указаны точки, куда можно вводить иглы, которые затем можно поворачивать, подавать на них электроимпульсы или подогревать. Во многих случаях это дает впечатляющий обезболивающий эффект.

<Рис. Акупунктура — метод, связанный со стимулогенной аналгезией, — часто используется для уменьшения боли.>

Таким образом, есть все основания считать, что лекарственные препараты вместе с факторами психологического уровня — культурными традициями и различными методами нетрадиционной медицины — могут значительно уменьшать боль. Однако все эти факторы имеют нечто общее на биологическом уровне. Следовательно, здесь мы имеем случай, когда исследования на биологическом уровне помогают действительно унифицировать данные психологического уровня.

Взаимодействие между психологическими и биологическими исследованиями боли являются типичным примером успешного взаимодействия между этими двумя подходами к феномену ощущений. Как мы уже говорили в начале этой главы, вероятно, ни в одной другой области психологии сотрудничество биологического и психологического подхода не является столь успешным. Мы снова и снова убеждаемся в том, что нейронные события, происходящие в рецепторах, могут объяснять феномены, происходящие на психологическом уровне. Так, обсуждая зрительное восприятие, мы показали, как вариации в чувствительности и остроте зрения (являющиеся психологическими феноменами) могут быть поняты как прямое следствие того, как различные типы рецепторов (палочки или колбочки) связаны с ганглиозными клетками. Также говоря о зрении, мы показали, как психологические теории цветового зрения привели к открытиям на биологическом уровне (в частности, к открытию трех типов колбочек). В случае слухового восприятия локальная (place) теория восприятия частоты первоначально являлась психологической теорией, которая стимулировала физиологические исследования базилярной мембраны. Если кому-либо потребуется обосновать правомерность совместного использования психологического и биологического подхода, исследования в области ощущений могут послужить для него убедительным примером.

Резюме

1. С психологической точки зрения, ощущения — это переживания, связанные с простыми стимулами; на биологическом уровне процессы ощущения рассматриваются в составе органов чувств, проводящих нервных путей и начальных этапов

Наши рекомендации