Гемодинамический центр и его структура. Рецепторы сердечно-сосудистой системы. Тонус центров, регулирующих систему кровообращения.

Тонус центров, регулирующих деятельность сердца

Нервный центр, от которого идут к сердцу блуждающие нервы, как правило, находится в состоянии постоянного возбуждения — так называемого центрального тонуса. При нормальных условиях кровообращения по блуждающим нервам к сердцу постоянно поступают тормозящие влияния. Прекращение этих влияний после перерезки обоих блуждающих нервов у собаки вызывает учащение сокращений сердца.

У человека временного выключения влияния блуждающих нервов можно добиться введением алкалоида атропина. В таких случаях сокращения сердца резко учащаются. Удаление обоих звездчатых узлов, от которых отходят к сердцу симпатические нервы, не влечет за собой стойкого урежения сердечных сокращений, так как тонус нервных центров, от которых к сердцу идут симпатические нервы, или отсутствует, или выражен слабо. Поддержание центрального тонуса блуждающих нервов обусловлено рефлекторными влияниями, т. е. возбуждением ядра блуждающих нервов импульсами, идущими к нему по центростремительным нервам от различных рецепторов. В поддержании тонуса ядер блуждающих нервов особенно велика роль тех импульсов, которые поступают к ним по центростремительным нервам от рецепторов дуги аорты и каротид-ного синуса. Перерезка этих нервов вызывает падение тонуса центров блуждающих нервов и вследствие этого отмечается такое же учащение сердечных сокращений, как после перерезки самих блуждающих нервов. На тонус ядер блуждающих нервов влияют также некоторые химические факторы. Тонус повышается при увеличении содержания в крови адреналина, выделяемого в кровь мозговым веществом надпочечников, а также ионов Са2.

25Гипертрофия и атрофия мышц. Гиподинамия, механизмы адаптации. Утомление организма и его предупреждение
Гипертрофия мышц - повыш. массы цитоплазмы мышеч. волокон и содержания в них миофибрилл, это приводит к увеличению каждого волокна в диаметре. (+ активный синтез нукл. к-т и белков и повыш. сод-я в-в, кот. поставляют энергию, кот. исп-ся при мышеч. сокращ. — креатинфосфата и аденозинтрифосфата, а также гликогена. (сила и скорость сокр. увелич.)

Атрофия мышц развивается, когда мышцы длительное время не выполняют нормальной нагрузки. диаметр мышечных волокон и содержание в них белков, АТФ, гликогена, и других сократительных для деятельности веществ уменьшаются. После возобновления работы, атрофия мышц постепенно исчезает.(другой вид - при повр. двигат. нерва)
Гипокинезия - комплекс двигательных расстройств (понижение двигательной активности и замедленность движений), развивающихся при поражениях ц.н.с. Ограничение подвижности, обусловленное образом жизни, особенностями профессиональной деятельности, постельным режимом в период заболевания, иммобилизацией (гипсовые повязки, скелетное вытяжение) и сопровождающееся дефицитом мышечной нагрузки, носит название гиподинамии.

26восновном, регуляция внутри эндокринной системы осуществляется посредством гормональных и нейрогормональных механизмов. Высшим центром нейрогормонального управления, который осуществляет переключение регуляции с нервной системы на эндокринную, является гипоталамо-гипофизарная система. Она включает в себя гипоталамус – один из отделов промежуточного мозга и гипофиз – эндокринную железу, которая локализуется в головном мозге. гипоталамо-гипофизарном структурно-функциональном объединении различают две относительно самостоятельные системы. Первая система состоит из супраоптическогоипаравентрикулярного ядер гипоталамуса, которые связаны с гипофизом гипоталамо-гипофизарным нервным трактом. вторая система состоит из гипофизотропной зоны гипоталамуса, которая связана с гипофизом венозной сосудистой сетью. В гипофизотропной зоне гипоталамуса синтезируются нейрогормоны, которые называют рилизинг-факторами. ыделяют две группы рилизинг-факторов: либерины и статины.

27Гипофиз, его строение и внутренняя секреция. Средняя и задняя доли

Гипофиз состоит из двух крупных различных по происхождению и структуре долей: передней — аденогипофиза (составляет 70—80 % массы органа) и задней — нейрогипофиза. Вместе с нейросекреторными ядрами гипоталамуса гипофиз образует гипоталамо-гипофизарную систему, контролирующую деятельность периферических эндокринных желёз.

Передняя доля (аденогипофиз) Передняя доля гипофиза , или аденогипо́физ, состоит из железистых эндокринных клеток различных типов, каждый из которых, как правило, секретирует один из гормонов.

Гормоны передней доли гипофиза:

Тропные, так как их органами-мишенями являются эндокринные железы. Гипофизарные гормоны стимулируют определенную железу, а повышение уровня в крови выделяемых ею гормонов подавляет секрецию гормона гипофиза по принципу обратной связи.

- Тиреотропный гормон — главный регулятор биосинтеза и секреции гормонов щитовидной железы. Активирует функцию щитовидной железы, вызывает гиперплазию ее железистой ткани, стимулирует выработку тироксина и трийодтиронина. Образование ТТГ стимулируется тиреолиберином гипоталамуса, а угнетается соматостатином.

- Адренокортикотропный гормон стимулирует кору надпочечников.

- Гонадотропные гормоны: фолликулостимулирующий гормон способствует созреванию фолликулов в яичника, у мужчин под его влиянием происходит образование сперматозоидов; лютеинизирующий гормон вызывает овуляцию и образование желтого тела, стимулирует образование женских и мужских половых гормонов соответственно.

- Соматотропный гормон — важнейший стимулятор синтеза белка в клетках, образования глюкозы и распада жиров, а также роста организма. В сутки секретируется 500-875 мкг этого гормона.

Соматотропин необходим для нормального линейного роста. Его действие на процессы роста являются опосредованными через факторы сыворотки крови. Эти факторы получили название соматомединов и именно они ответственны за стимуляцию роста. К настоящему времени идентифицировано 4 различных соматомедина.

Представляет собой анаболический гормон. Он стимулирует поступление аминокислот в клетки, синтез белка за счет ускорения трансляции и активации синтеза РНК, увеличивает деление клеток и рост ткани, подавляет протеолитические ферменты. Стимулирует включение сульфата в хрящи, тимидина в ДНК, пролина в коллаген, уритина в РНК. Гормон вызывает положительный азотистый баланс. Стимулирует рост эпифизарных хрящей и их замену костной тканью, активируя щелочную фосфатазу. Эти эффекты осуществляется прямо и опосредованно (через соматомедины).

Он повышает продукцию инсулина как из-за прямого эффекта на Р-клетки, так и из-за вызываемой гормоном гипергликемии, обусловленной активацией секреции глюкагона, распадом гликогена в печени и мышцах, угнетением утилизации глюкозы в тканях.

Соматотропин находится под двойной гипоталамической регуляцией. Его секрецию стимулирует соматолиберин и ингибирует соматостатин.

- Лютеотропный гормон (пролактин) стимулирует рост молочных желез и способствует образованию молока, стимулирует рост желтого тела и выработку им прогестерона, влияет на водно-солевой баланс, усиливая эффекты альдостерона и вазопрессина.

Стимуляторами секреции пролактина являются пролактолиберин, тиролиберин, серотонин, окситоцин, вазопрессин.

При гипофункции передней доли гипофиза в детстве наблюдается карликовость. При гиперфункции передней доли гипофиза в детстве развивается гигантизм.

Задняя доля (нейрогипофиз) Задняя доля гипофиза или нейрогипо́физ состоит из:

-нервная доля. Образована клетками эпендимы (питуицитами) и окончаниями аксонов нейросекреторных клеток паравентрикулярного и супраоптического ядер гипоталамуса промежуточного мозга, в которых и синтезируются вазопрессин (антидиуретический гормон) и окситоцин, транспортируемые по нервным волокнам, составляющим гипоталамо-гипофизарный тракт, в нейрогипофиз. В задней доле гипофиза эти гормоны депонируются и оттуда поступают в кровь.

- воронка. Соединяет нервную долю со срединным возвышением. Воронка гипофиза, соединяясь с воронкой гипоталамуса, образует ножку гипофиза.

Гормоны задней доли гипофиза:

Вазопрессин выполняет в организме две функции:

усиление реабсорбции воды в собирательных трубочках почек (это антидиуретическая функция вазопрессина); влияние на гладкую мускулатуру артериол.

Однако название «вазопрессин» не совсем соответствует свойству этого гормона суживать сосуды. В нормальных физиологических концентрациях он сосудосуживающим эффектом не обладает. Сужение сосудов может происходить при экзогенном внедрении гормона в больших количествах или же при кровопотере, когда гипофиз интенсивно выделяет этот гормон. При недостаточности нейрогипофиза развивается синдром несахарного диабета, при котором с мочой в день может теряться значительное количество воды (15л/сутки), так как снижается её реабсорбция в собирательных трубочках.

Окситоцин во время беременности не действует на матку, так как под воздействием прогестерона, выделяемого жёлтым телом, она становится нечувствительной к данному гормону. Окситоцин способствует сокращению миоэпителиальных клеток, способствующих выделению молока из молочных желез. Промежуточная (средняя) доля У многих животных хорошо развита промежуточная доля гипофиза, расположенная между передней и задней долями. По происхождению она относится к аденогипофизу. У человека она представляет тонкую прослойку клеток между передней и задней долями, довольно глубоко заходящую в ножку гипофиза. Эти клетки синтезируют свои специфические гормоны — меланоцитстимулирующие и ряд других.

28) Сердце снабжается кровью через коронарные артерии, отходящие от аорты. В сердце имеется небольшое количество межартериальных анастомозов. Миокард пронизывает большое количество капилляров. В состоянии покоя у человека через коронарные сосуды проходит 4-5% всего минутного объема крови. При интенсивной физической работе коронарный кровоток возрастает в 5-7 раз. В период систолы коронарные сосуды частично сжимаются и кровоток в них снижается. Во время диастолы он восстанавливается. Регуляция коронарного кровотока осуществляется миогенными, гуморальными и нервными механизмами. Первый обусловлен автоматией гладких мышц сосудов и обеспечивает поддержание постоянства коронарного кровотока при колебаниях артериального давления от 75 до 140 мм.рт.ст. Гуморальный механизм. Наиболее мощным стимулятором расширения коронарных сосудов является недостаток О2(всего 5%). Расширяют сердечные сосуды гистамин, ацетилхолин, простагландины Е. Симпатические нервы обладают слабым сосудосуживающим влиянием. Слабое вазодилататорное действие оказывают парасимпатические нервы.

Кровоснабжение мозга осуществляется двумя внутренними сонными и двумя позвоночными артериями, а отток крови происходит по двум яремным венам. Магистральные артерии соединяются в виллизиев круг. Вены образуют систему синусов. Отходящие от него крупные артерии образуют сеть пиальных сосудов. Эта сеть вместе с пиальными венами формирует мягкую мозговую оболочку. От пиальных сосудов вглубь мозга идут мелкие радиальные артерии, которые переходят в капиллярную сеть. В основном сосуды иннервируются симпатическими нервами, хотя имеется и холинэргическая иннервация. Через сосуды мозга в покое проходят 15% минутного объема крови. Мозг потребляет до 20% всего кислорода и 17% глюкозы. Он очень чувствителен к гипоксии и гипогликемии, а следовательно ухудшению кровотока. Тонус сосудов мозга регулируется миогенными, гуморальными и нейрогенными механизмами. Миогенный проявляется сокращением гладких мышц сосудов при ↑ кровяного давления и наоборот расслаблением при его ↓. Он стабилизирует быстрые колебания кровотока. Нервная регуляция осуществляется симпатическими нервами, которые кратковременно и незначительно суживают сосуды. Основная роль принадлежит гуморальным факторам. Увеличение концентрации CO2 крови сопровождается выраженным расширением сосудов мозга. При гипервентиляции содержание СО2 падает, сосуды мозга суживаются, мозговой кровоток уменьшается. Аденозин, брадикинин, гистамин расширяют сосуды. Вазопрессин, ссротонин, ангиотензин суживают.

Существенной особенностью сосудистой системы легких является то, что она включает сосуды малого круга и бронхиальные артерии большого. Первые служат для газообмена, вторые обеспечивают кровоснабжение ткани легких. У человека между ними имеются анастомозы, роль которых в гемодинамике малого круга значительно возрастает при застойных явлениях в нем. Легочная артерия разветвляется на более мелкие артерии, а затем артериолы. Артериолы окружены паренхимой легких, поэтому кровоток в них тесно связан с режимом вентиляции легких. Стенка легочного капилляра и альвеолы образуют альвеолокапиллярную мембрану. Через нее осуществляется газообмен. Нервная регуляция тонуса легочных сосудов осуществляется симпатическими нервами. Они оказывают слабое сосудосуживающее влияние. Из факторов гуморальной регуляции легочного кровотока главную роль играют серотонин, гистамин, ангиотензин, которые суживают сосуды.

Через почки в состоянии покоя проходит 20% минутного объема крови. Давление в капиллярах сосудистых клубочков нефронов значительно составляет 50-70 мм.рт.ст. Это связано с тем, что диаметр приносящих артериол больше, чем выносящих. Основное значение в регуляции почечного кровотока принадлежит миогенным механизмам. Они поддерживают постоянство капиллярного давления и кровотока при колебаниях артериального от 80 до 180 мм.рт.ст. Вторым по значению является гуморальный механизм. Особую роль играют ренин-ангиотензиновая и калликреин-кининовая системы. Брадикинин расширяет сосуды почек. Значение нервно-рефлекторных механизмов в регуляции их тонуса невелико. Сосуды иннервируются симпатическими вазоконстрикторами.

Гистогематический барьер– это барьер между кровью и тканью. Морфологическим субстратом гистогематического барьера является стенка капилляров, состоящая из:

1) фибриновой пленки; 2) эндотелия на базальной мембране; 3) слоя перицитов; 4) адвентиции.

В организме они выполняют две функции – защитную и регуляторную.

Защитная функциясвязана с защитой ткани от поступающих веществ (чужеродных клеток, антител, эндогенных веществ и др.).

Регуляторная функциязаключается в обеспечении постоянного состава и свойств внутренней среды организма, проведении и передаче молекул гуморальной регуляции, удалении от клеток продуктов метаболизма.

Гистогематический барьер может быть между тканью и кровью и между кровью и жидкостью.

Основным фактором, влияющим на проницаемость гистогематического барьера, является проницаемость. Проницаемость– способность клеточной мембраны сосудистой стенки пропускать различные вещества. Она зависит от:1) морфофункциональных особенностей;

2) деятельности ферментных систем;

3) механизмов нервной и гуморальной регуляции.

В плазме крови находятся ферменты, которые способны изменять проницаемость сосудистой стенки. В норме их активность невелика, но при патологии или под действием факторов повышается активность ферментов, что приводит к повышению проницаемости. Этими ферментами являются гиалуронидаза и плазмин. Нервная регуляция осуществляется по бессинаптическому принципу, так как медиатор с током жидкости поступает в стенки капилляров. Симпатический отдел вегетативной нервной системы уменьшает проницаемость, а парасимпатический – увеличивает.

Гуморальная регуляция осуществляется веществами, делящимися на две группы – повышающие проницаемость и понижающие проницаемость.

Повышающее влияние оказывают медиатор ацетилхолин, кинины, простагландины, гистамин, серотонин, метаболиты, обеспечивающие сдвиг pH в кислую среду.

Понижающее действие способны оказывать гепарин, норадреналин, ионы Ca.

Гистогематические барьеры являются основой для механизмов транскапиллярного обмена.

Таким образом, на работу гистогематических барьеров большое влияние оказывают строение сосудистой стенки капилляров, а также физиологические и физико-химические факторы.

29) Физиологические особенности гладких мышц. 1) возбудимость (ниже, чем в нервном волокне, что объясняется низкой величиной мембранного потенциала); 2) низкая проводимость, порядка 10–13 м/с; 3) рефрактерность (занимает по времени больший отрезок, чем у нервного волокна); 4) лабильность; 5) сократимость (способность укорачиваться или развивать напряжение).

Различают два вида сокращения: а) изотоническое сокращение (изменяется длина, тонус не меняется); б) изометрическое сокращение (изменяется тонус без изменения длины волокна). Различают одиночные и титанические сокращения. Одиночные сокращения возникают при действии одиночного раздражения, а титанические возникают в ответ на серию нервных импульсов; 6) эластичность (способность развивать напряжение при растягивании).

Гладкие мышцы имеют те же физиологические свойства, что и скелетные мышцы, но имеют и свои особенности: 1) нестабильный мембранный потенциал, который поддерживает мышцы в состоянии постоянного частичного сокращения – тонуса; 2) самопроизвольную автоматическую активность; 3) сокращение в ответ на растяжение; 4) пластичность (уменьшение растяжения при увеличении растяжения); 5) высокую чувствительность к химическим веществам.

Гладкие мышцы имеются в стенках больш. органов пищевар., сосудов, выводных протоков желёз мочевыв. сис-мы. Они являются непроизв. и обеспеч-ют перистальтику орг-в пищевар. и мочевыв. сис-мы, поддерж. тонуса сосудов. В отличие от скелетных, гладкие мышцы поперечности клетками чаще веретенообр. формы и небольших размеров, не имеющими поперечной почёрченности. Последнее связано с тем, что сократительный аппарат не обладает упорядоченным строением. Миофибриллы состоят из тонких нитей актина, кот идут в различных напр-ях и прикрепл. к разным участкам сарколеммы. Миозиновые протофибриллы расположены рядом с актиновыми. Элементы СПР не образуют сис-му трубочек. Отдельные мышечные клетки соед-ся между собой контактами с низким электр. сопр. - нексусами, что обеспеч. распр-е возб-я по всей гладкомыш. стр-ре. Возбудим. и проводим. гладких мышц ниже чем скелетных. МП = 40-60 мВ, т.к. мембрана ГМК имеет относительно высокую прониц-ть для ионов Na. Причем у многих гладких мышц МП не постоянен. Он периодически уменьш. и вновь возвр. к исходному уровню. Такие колебания называют медленными волнами (МВ). Когда вершина Мв достигает КУД, на ней нач-ют генерироваться ПД. МВ и ПД проводятся по гладким мышцам со скоростью всего от 5 до 50 см/сек. Такие гладкие мышцы называют спонтанно активными, т.е. они обладают автоматией. Н-р, за счет такой акт-ти происходит перистальтика кишечника. Водители ритма кишечной перистальтики расположены в начальных отделах соответствующих кишок.

Генерация ПД в ГМК обусловлена входом в них ионов Са. Механизмы электромеханического сопряжения также отличаются. Сокращение развивается за счет Са, входящего в клетку во время ПД, Опосредует связь Са с укорочением миофибрилл важнейший клеточный белок - кальмодулин.

Кривая сокращения также отличается. Латентный период, период укорочения, а особенно расслабления значительно продолжительнее, чем у скелетных мышц. Сокращение длится несколько секунд. Гладким мышцам, в отличие от скелетных свойственно явление пластического тонуса. Это способность длительное время находится в состоянии сокращения без значительных энергозатрат и утомления. Благодаря этому свойству поддерживается форма внутренних органов и тонус сосудов. Кроме того, гладкомышечные клетки сами являются рецепторами растяжения. При их натяжении начинают генерироваться ПД, что приводит к сокращению ГМК. Это явление называется: миогенным механизмом регуляции сократительной активности

30) Гормоны плаценты и эпифиза. Тканевые гормоны. Собственные гормоны ЖКТ. Межклеточные связи в организме. Креаторные взаимодействия.

Снаружи эпифиз покрыт соединительнотканной капсулой, от которой внутрь железы отходят трабекулы, разделяющие её на дольки. Вырабатывает гормоны мелатонин, серотонин и адреногломерулотропин.

До сих пор функциональная значимость эпифиза для человека недостаточно изучена. Секреторные клетки эпифиза выделяют в кровь гормон мелатонин, синтезируемый из серотонина, который участвует в синхронизациициркадных ритмов (биоритмы «сон — бодрствование») и, возможно, влияет на все гипоталамо-гипофизарные гормоны, а также иммунную систему. Адреногломерулотропин стимулирует выработку альдостерона, биосинтез осуществляется путём восстановления серотонина.

влияние на половое развитие и сексуальное поведение. У детей эпифиз имеет бо́льшие размеры, чем у взрослых; по достижении половой зрелости выработка мелатонина уменьшается.

Плацента– уникальное образование, которое связывает материнский организм с плодом. Она выполняет многочисленные функции, в том числе метаболическую и гормональную. Она синтезирует гормоны двух групп: 1) белковые – хорионический гонадотропин (ХГ), плацентарный лактогенный гормон (ПЛГ), релаксин; 2) стероидные – прогестерон, эстрогены.

ХГ образуется в больших количествах через 7—12 недель беременности, в дальнейшем образование гормона снижается в несколько раз, его секреция не контролируется гипофизом и гипоталамусом, его транспорт к плоду ограничен. Функции ХГ – увеличение роста фолликулов, образование желтого тела, стимулирование выработки прогестерона. Защитная функция заключается в способности предотвращать отторжение зародыша организмом матери. ХГ обладает антиаллергическим действием.

ПЛГ начинает секретироваться с шестой недели беременности и прогрессивно увеличивается. Он влияет на молочные железы подобно пролактину гипофиза, на белковый обмен (повышает синтез белка в организме матери). Одновременно возрастает содержание свободных жирных кислот, повышается устойчивость к действию инсулина.

Релаксин секретируется на поздних стадиях развития беременности, расслабляет связки лонного сочленения, снижает тонус матки и ее сократимость.

Прогестерон синтезируется желтым телом до четвертой– шестой недели беременности, в дальнейшем в этот процесс включается плацента, процесс секреции прогрессивно нарастает. Прогестерон вызывает расслабление матки, снижение ее сократимости и чувствительность к эстрогенам и окситоцину, накопление воды и электролитов, особенно внутриклеточного натрия. Эстрогены и прогестерон способствуют росту, растяжению матки, развитию молочных желез и лактации.

Тканевые гормоны – биологически активные вещества, действующие в месте своего образования, не поступающие в кровь.

APUD-система является отделом эндокринной системы. Её также называют «диффузная эндокринная система» или «диффузная нейроэндокринная система». По существу, это диффузно расположенные клетки и группы клеток, выделяющие гормоны, которые оказывают как местные (паракринные), так и дистанционные (эндокринные), влияния на различные структуры организма. Эти клетки рассеяны в эпителиальнойткани слизистой оболочки желудочно-кишечного тракта (ЖКТ), воздухоносных путей, легких и других органов, а также в нервных центрах и эндокринных железах.

Ключевые признаки APUD-системы 1. Диффузное (разбросанное) расположение её клеток в отличие от секретирующих клеток эндокринных желёз. 2. Поглощение аминокислот-предшественниц. 3. Декарбоксилирование аминокислот-предшественниц. 4. Секреция биогенных аминов и/или пептидных гормонов.

Соматостатин Желудок, проксимальный отдел тонкой кишки, поджелудочная железа D-клетки Тормозит выделение инсулина и глюкагона, большинства известных желудочно-кишечных гормонов (секретина, ГИПа, мотилина, гастрина); тормозит активность париетальных клеток желудка и ацинарных клеток поджелудочной железы.

Вазоактивный интестинальный пептид (ВИП) Во всех отделах желудочно-кишечного тракта D-клетки Тормозит действие холецисто-кинина, секрецию соляной кислоты и пепсина желудком, стимулированную гистамином, расслабляет гладкие мышцы кровеносных сосудов, желчного пузыря

Панкреатический полипептид (ПП) Поджелудочная железа D2 клетки Антагонист ХЦК-ПЗ, усиливает пролиферацию слизистой оболочки тонкой кишки, поджелудочной железы и печени; участвует в регуляции обмена углеводов и липидов.

Гастрин Антральная часть желудка, поджелудочная железа, проксимальный отдел тонкой кишки G-клетки Стимулирует секрецию и выделение пепсина желудочными железами, возбуждает моторику расслабленного желудка и 12-перстной кишки, а также желчного пузыря.

Гастрон Антральный отдел желудка G-клетки Снижает объем желудочной секции и выход кислоты в желудочном соке.

Бульбогастрон Антральный отдел желудка G-клетки Тормозит секрецию и моторику желудка.

СекретинТонкий кишечник S-клетки Стимулирует секрецию бикарбонатов и воды поджелудочной железой, печенью, железами Бруннера, пепсина-желудком; тормозит секрецию соляной кислоты в желудке

Холецистокинин панкреозимин (ХЦК-ПЗ) Тонкий кишечник I-клетки Возбуждает выход ферментов и в слабой степени стимулирует выход бикарбонатов поджелудочной железой, тормозит секрецию соляной кислоты в желудке, усиливает сокращение желчного пузыря и желче-выделение, усиливает моторику тонкой кишки.

Энтероглюкагон Тонкий кишечник ЕС1- клетки Тормозит секреторную активность желудка, снижает в желудочном соке содержание К+ и повышает Са2+, тормозит моторику желудка и тонкой кишки.

Энкефалины (Эндорфины) Проксимальный отдел тонкой кишки и поджелудочная железа L- клетки Тормозит секрецию ферментов поджелудочной железой, усиливает высвобождение гастрина, возбуждает моторику желудка.

Энтерогастрон Двенадцатиперстная кишка ЕС1- клетки Тормозит секреторную активность и моторику желудка.

Серотонин Желудочно-кишечный тракт ЕС1ЕС2-клетки Тормозит выделение соляной кислоты в желудке, стимулирует выделение пепсина, активирует секрецию поджелудочной железы, желчевыделение, кишечную секрецию.

Гистамин Желудочно-кишечный тракт ЕС2- клетки Стимулирует выделение секреции желудка и поджелудочной железы, расширяет кровеносные капилляры, оказывает активирующее влияние на моторику желудка и кишечника.

ИнсулинПоджелудочная железа B-клетки Стимулирует транспорт веществ через клеточные мембраны, способствует утилизации глюкозы и бразованию гликогена, тормозит липолиз, активирует липогенез, повышает интенсивность синтеза белка.

Глюкагон Поджелудочная железа а-клетки Мобилизирует углеводы, тормозит секрецию желудка и поджелудочной железы, тормозит моторику желудка и кишок.

Ангиотензин. Высокой активностью обладает ангиотензин-2. Активирует гладкомышечные клетки сосудов, вызывает их сужение и ↑ АД, усиливает продукцию альдостерона. Система ренин-ангиотензин-альдостерон имеет важное значение в регуляции АД. ↑выработки ренина, при ↓ конц-и Na в крови, при возбуждении симпатической нервной системы приводит к ↑ образования ангиотензина-2 и возникает стойкое ↑АД.

Кинины– биол.активные в-ва пептидной природы (каллидин, брадикинин). Вызывает медленное сокращение матки и кишечника, на гладкие мышцы сосудов действует как вазодилятатор. Расширяют коронарные сосуды сердца, принимают участие в образовании отеков, их кол-во возрастает при аллергии, при шоке и ожогах. Эритропоэтин– гликопротеид.синтезируется в почках. Секреция ↑ при гипоксемии. Влияют на стволовые клетки крастного костного мозга,что ведет к усилению синтеза гемоглобина и эритроцитов.

Сердечные пептиды. При ↑ давления, при растяжении предсердий, возбуждаются барорецепторы, что ведет к поступлению в кровоток сердечных пептидов. Они оказывают диуретическое, натрийуретическое и сосудорасширяющее действие, одновременно тормозят секрецию альдостерона.

Простогландины – биол. Активные в-ва, производные полиненасыщенных жирных к-т. Они действуют как местные, межклеточные или внутриклеточные модуляторы бх активности в тканях. Из арахидоновой к-ты образуется 4 группы простогландинов. Лейкотриены: образуются из фосфолипидов мембран лейкоцитов. Оказывают противовоспол. Действие, ↑ тонус гладких мышц, участвуют в аллергич.р-ях. Тромбоксаны образуются в тромбоцитах и способствуют адгезии и агрегации тромбоцитов. Простациклины образуются в эндотелии сосудов, оказывают сосудорасширяющее действие,препятствуя адгезии и агрегации тромбоцитов. Собственно простогландины оказывают сильное стимулирующее действие на мускулатуру матки и гладкую мускулатуру др.органов, ↓ выделение желудочного сока и ↓ его кислотность, являются медиаторами воспаления и аллергический реакций, ↑ чувствительность болевых рецепторов, ↓ реакцию органов к катехоламинам.

31)4группы.

32) Гуморальная физиологическая регуляция для передачи информации использует жидкие среды организма (кровь, лимфу, цереброспинальную жидкость и т.д.) Сигналы передаются посредством химических веществ: гормонов, медиаторов, биологически активных веществ (БАВ), электролитов и т.д.

Особенности гуморальной регуляции:

1. не имеет точного адресата – с током биологических жидкостей вещества могут доставляться к любым клеткам организма;

2. скорость доставки информации небольшая – определяется скоростью тока биологических жидкостей – 0,5-5 м/с;

3. продолжительность действия.

4. Факторами гуморальной регуляции являются:

Наши рекомендации