Реакция системы крови на учебную и физическую нагрузку

Физическое и психическое напряжение организма приводит к существенным изменениям состава крови и некоторых ее функциональных свойств. Все эти изменения носят адаптивный характер, однако в случаях перенапряжения они могут отражать патологические процессы, являющиеся следствием срыва адаптации.

Учебная нагрузка. Белая кровь. Под влиянием обычной для школы учебной нагрузки у детей наблюдается относительный лейкоцитоз, то есть увеличение числа лейкоцитов в среднем на 24%. При этом степень их зрелости практически не меняется. По-видимому, это характеризует готовность организма столкнуться с микробной агрессией извне и с накоплением в крови продуктов распада клеток собственного тела под влиянием утомления.

Вязкость крови и скорость оседания эритроцитов. Вязкость крови после учебной нагрузки обычно становится выше, чем до нее.

В то же время она может и снизиться, если исходные величины были высоки. Величина СОЭ сразу после уроков у большинства детей младших классов увеличивается, хотя около 30 % детей не проявляют подобной реакции. Если же исходная величина СОЭ была повышена, то под влиянием учебной нагрузки она может снизиться.

Свертывание крови. Учебная нагрузка стимулирует заметное ускорение свертывания крови, по крайней мере у детей младшего школьного возраста (до 11 лет). С наступлением полового созревания разброс индивидуальных характеристик становится столь велик, что оценить влияние учебной нагрузки достаточно сложно.

Физическая нагрузка. Белая кровь. Реакция белой крови на физическую нагрузку зависит от ее мощности (интенсивности) и продолжительности. В целом она характеризуется увеличением числа лейкоцитов в крови, однако степень зрелости клеток и преобладающая их разновидность при этом зависят от параметров нагрузки и возраста ребенка. Чем дольше выполняется нагрузка, тем сильнее выражен лейкоцитоз. Нормализация состава крови наблюдается только через сутки после напряженной и длительной мышечной работы (бег на длинную дистанцию, велосипедные гонки и т.п.). Одновременно активируются процессы разрушения лейкоцитов, которые остаются повышенными в течение 3 ч после нагрузки.

Красная кровь. После нагрузки количество эритроцитов в крови всегда изменяется, но характер этих изменений опять же зависит от интенсивности и продолжительности нагрузки. Если нагрузка кратковременная — отмечается небольшое увеличение (8—10 %) числа эритроцитов, которые в этом случае выходят из депо (селезенка). Если нагрузка длительная и напряженная — число эритроцитов может снизиться, т. е. часть эритроцитов подвергается разрушению, причем после прекращения нагрузки этот процесс продолжается. Одновременно активируются процессы образования эритроцитов в костном мозге, и в крови появляется большое количество молодых форм. Таким образом, после значительной физической нагрузки кровь как бы «обновляется». Кратковременная нагрузка такого эффекта не дает. У детей эти изменения в крови выражены намного более отчетливо, чем у взрослых.

Вязкость крови и скорость оседания эритроцитов. Непродолжительная или неинтенсивная нагрузка не влияет на вязкость крови, тогда как длительная напряженная работа приводит к ее увеличению, которое длится до 2 сут. У взрослых аналогичная работа может и не приводить к увеличению вязкости.

Под влиянием кратковременной нагрузки СОЭ может у одних Детей ускоряться, у других замедляться. Однако длительная нагрузка высокой мощности всегда приводит к увеличению СОЭ, которая может оставаться повышенной в течение 24 ч после нагрузки. У взрослых величина СОЭ возвращается к исходному уровню быстрее, чем у юношей и девушек.

Свертывание крови. Мышечная работа вызывает четко выраженный тромбоцитоз, который в этом случае называют миогенным. Эта реакция организма протекает в две фазы: сначала увеличивается число тромбоцитов в крови, а затем изменяется их состав. У взрослых обычно мышечная нагрузка не приводит к проявлению второй фазы, тогда как организм детей и подростков реагирует на нагрузку более бурно и миогенный тромбоцитоз быстро проходит первую, а затем и вторую фазу. Это обусловливает существенное увеличение скорости свертывания крови. Адаптивный смысл такой реакции вполне очевиден: организм как бы подготавливает себя к возможному повреждению покровных тканей и сосудов в процессе напряженной мышечной деятельности, заранее активируя разнообразные системы защиты.

Гомеостаз

Гомеостаз, гомеорез, гомеоморфоз — характеристики состояния организма. Системная сущность организма проявляется в первую очередь в его способности к саморегуляции в непрерывно меняющихся условиях окружающей среды. Поскольку все органы и ткани организма состоят из клеток, каждая из которых является относительно самостоятельным организмом, состояние внутренней среды человеческого организма имеет огромное значение для его нормального функционирования. Для организма человека — сухопутного существа — окружающую среду составляют атмосфера и биосфера, при этом он в определенной мере взаимодействует с литосферой, гидросферой и ноосферой. В то же время большинство клеток человеческого тела погружено в жидкую среду, которая представлена кровью, лимфой и межклеточной жидкостью. Лишь покровные ткани непосредственно взаимодействуют с окружающей человека средой, все остальные клетки изолированы от внешнего мира, что позволяет организму в значительной мере стандартизировать условия их существования. В частности, способность поддерживать постоянную температуру тела около 37 °С обеспечивает стабильность метаболических процессов, поскольку все биохимические реакции, которые составляют сущность метаболизма, очень сильно зависят от температуры. Не менее важно поддерживать в жидких средах организма неизменное напряжение кислорода, углекислого газа, концентрацию разнообразных ионов и т.п. В обычных условиях существования, в том числе при адаптации и деятельности, возникают небольшие отклонения такого рода параметров, но они быстро устраняются, внутренняя среда организма возвращается к стабильной норме. Великий французский физиолог XIX в. Клод Бернар утверждал: «Постоянство внутренней среды является обязательным условием свободной жизни». Физиологические механизмы, обеспечивающие поддержание постоянства внутренней среды, называются гомеостатическими, а само явление, отражающее способность организма к саморегуляции внутренней среды, называется гомеостазом. Этот термин был введен в 1932 г. У. Кэнноном — одним из тех физиологов XX в., который наряду с Н.А.Бернштейном, П.К.Анохиным и Н.Винером стоял у истоков науки об управлении — кибернетики. Термин «гомеостаз» используется не только в физиологических, но и в кибернетических исследованиях, поскольку именно поддержание постоянства каких-либо характеристик сложноорганизованной системы и является главной целью любого управления.

Другой замечательный исследователь, К.Уоддингтон, обратил внимание на то, что организм способен сохранять не только стабильность своего внутреннего состояния, но и относительное постоянство динамических характеристик, т. е. протекания процессов во времени. Это явление по аналогии с гомеостазом было названо гомеорезом. Оно имеет особое значение для растущего и развивающегося организма и состоит в том, что организм способен сохранять (в определенных пределах, разумеется) «канал развития» в ходе своих динамических преобразований. В частности, если ребенок из-за болезни или резкого ухудшения условий жизни, вызванных социальными причинами (война, землетрясение и т.п.), существенно отстает от своих нормально развивающихся сверстников, то это еще не означает, что такое отставание фатально и необратимо. Если период неблагоприятных событий заканчивается и ребенок получает адекватные для развития условия, то как по росту, так и по уровню функционального развития он вскоре догоняет сверстников и в дальнейшем ничем существенно от них не отличается. Этим объясняется то обстоятельство, что перенесшие в раннем возрасте тяжелую болезнь дети нередко вырастают в здоровых и пропорционально сложенных взрослых. Гомеорез играет важнейшую роль как в управлении онтогенетическим развитием, так и в процессах адаптации. Между тем физиологические механизмы гомеореза пока недостаточно изучены.

Третьей формой саморегуляции постоянства организма является гомеоморфоз — способность поддерживать неизменность формы. Эта характеристика в большей мере присуща взрослому организму, поскольку рост и развитие несовместимы с неизменностью формы. Тем не менее если рассматривать короткие отрезки времени, особенно в периоды торможения роста, то и у детей можно обнаружить способность к гомеоморфозу. Речь идет о том, что в организме непрерывно происходит смена поколений составляющих его клеток. Клетки долго не живут (исключение составляют только нервные клетки): обычный срок жизни клеток тела составляет недели или месяцы. Тем не менее каждое новое поколение клеток почти в точности повторяет форму, размеры, расположение и соответственно функциональные свойства предыдущего поколения. Специальные физиологические механизмы препятствуют значительным изменениям массы тела в условиях голодания или переедания. В частности, при голодании резко повышается усвояемость пищевых веществ, а при переедании, напротив, большая часть поступающих с пищей белков, жиров и углеводов «сжигается» без всякой пользы для организма. Доказано (Н. А. Смирнова), что у взрослого человека резкие и значительные изменения массы тела (главным образом за счет количества жира) в любую сторону являются верными признаками срыва адаптации, перенапряжения и свидетельствуют о функциональном неблагополучии организма. Детский организм становится особенно чувствителен к внешним воздействиям в периоды наиболее бурного роста. Нарушение гомеоморфоза — такой же неблагоприятный признак, как нарушения гомеостаза и гомеореза.

Понятие о биологических константах. Организм представляет собой комплекс огромного количества самых разнообразных веществ. В процессе жизнедеятельности клеток организма концентрация этих веществ может существенно меняться, что означает изменение внутренней среды. Было бы немыслимо, если бы управляющие системы организма вынуждены были следить за концентрацией всех этих веществ, т.е. иметь множество датчиков (рецепторов), непрерывно анализировать текущее состояние, принимать управляющие решения и контролировать их эффективность. Ни информационных, ни энергетических ресурсов организма не хватило бы на такой режим управления всеми параметрами. Поэтому организм ограничивается слежением за сравнительно небольшим числом наиболее значимых показателей, которые необходимо поддерживать на относительно постоянном уровне ради благополучия абсолютного большинства клеток тела. Эти наиболее жестко гомеостазируемые параметры тем самым превращаются в «биологические константы», а их неизменность обеспечивается за счет иногда достаточно значительных колебаний других параметров, не относящихся к разряду гомеостазируемых. Так, уровни гормонов, участвующих в регуляции гомеостаза, могут меняться в крови в десятки раз в зависимости от состояния внутренней среды и воздействия внешних факторов. В это же время гомеостазируемые параметры изменяются лишь на 10—20 %.

Важнейшие биологические константы. Среди наиболее важных биологических констант, за поддержание которых на сравнительно неизменном уровне ответственны различные физиологические системы организма, следует назвать температуру тела, уровень глюкозы в крови, содержание ионов Н+ в жидких средах организма, парциальное напряжение кислорода и углекислоты в тканях.

Болезнь как признак или следствие нарушений гомеостаза. Практически все болезни человека связаны с нарушением гомеостаза. Так, например, при многих инфекционных заболеваниях, а также в случае воспалительных процессов, в организме резко нарушается температурный гомеостаз: возникает лихорадка (повышение температуры), иногда опасная для жизни. Причина такого нарушения гомеостаза может заключаться как в особенностях нейроэндокринной реакции, так и в нарушениях деятельности периферических тканей. В этом случае проявление болезни — повышенная температура — представляет собой следствие нарушения гомеостаза.

Обычно лихорадочные состояния сопровождаются ацидозом — нарушением кислотно-щелочного равновесия и сдвигом реакции жидких сред организма в кислую сторону. Ацидоз характерен также для всех заболеваний, связанных с ухудшением работы сердечно-сосудистой и дыхательной систем (заболевания сердца и сосудов, воспалительные и аллергические поражения бронхолегочной системы и т.п.). Нередко ацидоз сопровождает первые часы жизни новорожденного, особенно если у него не сразу после появления на свет началось нормальное дыхание. Для устранения этого состояния новорожденного помещают в специальную камеру с повышенным содержанием кислорода. Метаболический ацидоз при тяжелой мышечной нагрузке может наблюдаться у людей любого возраста и проявляется в одышке и повышенном потоотделении, а также болезненных ощущениях в мышцах. После завершения работы состояние ацидоза может сохраняться от нескольких минут до 2—3 сут, в зависимости от степени утомления, тренированности и эффективности работы гомеостатических механизмов.

Весьма опасны болезни, приводящие к нарушению водно-солевого гомеостаза, например холера, при которой из организма Удаляется огромное количество воды и ткани утрачивают свои функциональные свойства. К нарушению водно-солевого гомеостаза ведут также многие заболевания почек. В результате некоторых из этих заболеваний может развиваться алкалоз — чрезмерное повышение концентрации щелочных веществ в крови и увеличение рН (сдвиг в щелочную сторону).

В некоторых случаях незначительные, но длительные нарушения гомеостаза могут стать причиной развития тех или иных заболеваний. Так, есть данные, что неумеренное употребление в пищу сахара и других источников углеводов, нарушающих гомеостаз глюкозы, ведет к поражению поджелудочной железы, в результате человек заболевает диабетом. Также опасно чрезмерное употребление поваренной и других минеральных солей, острых приправ и т.п., увеличивающих нагрузку на выделительную систему. Почки Могут не справиться с обилием веществ, которые необходимо удалить из организма, в результате чего наступит нарушение водно-солевого гомеостаза. Одним из его проявлений являются отеки — скопление жидкости в мягких тканях организма. Причина отеков обычно лежит либо в недостаточности сердечно-сосудистой системы, либо в нарушениях работы почек и, как следствие, минерального обмена.

Иммунная система организма

Еще одним важнейшим свойством внутренней среды многоклеточного организма является его способность защищаться от проникновения чужеродных клеток, частиц и молекул. Эта способность называется иммунитетом (от лат. слова immunis — свободный).

В организме человека параллельно работают три иммунные системы, различающиеся своими возможностями и механизмом действия.

Наиболее мощной и эффективной является специфическая иммунная система. Если в организм проникает чужеродная клетка или молекула (антиген), то клетки, относящиеся к специфической иммунной системе, начинают вырабатывать специальные вещества (антитела), которые соединяются с антигенами, образуя химический комплекс, и нейтрализуют их вредное влияние на организм. Особенностью этой иммунной системы является то, что она не единая для всех видов возбудителей болезней, а для каждого своя (специфическая), и для ее возникновения необходимо первоначальное взаимодействие организма с чужеродным фактором. Таким образом, формирование специфической иммунной системы представляет собой приобретенный иммунитет. Приобрести иммунитет человек может в двух случаях: естественным путем, столкнувшись с новым для него возбудителем болезни и переболев ею, а также искусственным путем — в результате прививки. Поэтому специфический, или приобретенный, иммунитет подразделяют на естественный и искусственный. Перенесенные в детстве болезни, такие как корь, свинка, скарлатина, ветрянка и другие «детские инфекции», не повторяются в дальнейшем именно благодаря действию этой иммунной системы.

Кроме того, организм человека обладает двумя формами врожденного, или неспецифического иммунитета — гуморальной и клеточной.

Специфические защитные механизмы. Основную роль в специфическом иммунном ответе организма выполняют белые кровяные клетки — лимфоциты, которые подразделяются на 2 типа: В-лимфоциты, которые приобретают свои иммунные свойства в костном мозге, и Т-лимфоциты, превращающиеся в активные иммунные тела в тимусе (вилочковой железе). Лимфоциты обоих типов способны сохранять иммунную память, что и обусловливает их эффективность в борьбе с новым вторжением уже известного организму патогенного агента.

В-лимфоциты ответственны за гуморальный иммунный ответ. Они составляют примерно 15 % от общего числа лимфоцитов крови. На поверхностной мембране этих клеток располагаются специфические белки — иммуноглобулины, которые и обусловливают их защитные свойства. Однако для того чтобы эти защитные свойства проявились, необходимо совместное участие в иммунных реакциях В- и Т-лимфоцитов. В-лимфоциты способны уничтожать не только возбудителей болезней, но и собственные клетки организма, в которых произошло опухолевое перерождение и которые стали синтезировать чуждый организму белок. Образуемые В-лимфоцитами антитела называют также иммуноглобулинами, поскольку химически они представляют собой молекулы белков-глобулинов, к которым прикреплены специфические участки, предназначенные для связывания с конкретными антигенами. В организме человека встречается 5 видов иммуноглобулинов, самый распространенный из них — IgG, или гамма-глобулин.

К Т-лимфоцитам относится 70—80 % всех лимфоцитов крови, и они ответственны за клеточный иммунный ответ. Существует довольно большое разнообразие этих клеток, одни из которых участвуют в активации В-лимфоцитов; другие уничтожают клетки, несущие антиген; третьи тормозят активность своих собратьев, чтобы иммунные реакции не нанесли вреда тканям собственного организма; четвертые хранят в себе память о предыдущих вторжениях в организм инородных агентов.

Неспецифические гуморальные защитные механизмы. Для того чтобы уничтожить чужеродную клетку, на нее должны подействовать антитела. Однако их действие будет неэффективным, если в этом процессе не будут участвовать 9 веществ, растворенных в плазме крови, которые все вместе называются комплементом. Одни из них нейтрализуют вирусы, другие — воспалительные реакции, растворяют мембраны болезнетворных бактерий и т.п., но, так или иначе, их участие необходимо для полноценного иммунного ответа организма.

Во многих тканях организма обнаружены лейкоциты и макрофаги, содержащие большое количество лизоцима — специального белка, подавляющего рост бактерий и вирусов. В значительных количествах лизоцим содержится в легочной ткани, в слюне и слезах, в слизистой желудочно-кишечного тракта, носоглотки и других органов человека, имеющих контакт с окружающей средой.

Еще одним неспецифическим агентом служит так называемый С-реактивный белок, содержание которого в плазме резко увеличивается при любом воспалительном процессе. Он участвует в подавлении жизнедеятельности чужеродных микробов.

Защиту от вторжения вирусов в значительной мере обеспечивает интерферон — специальный белок, вырабатываемый несколькими типами лейкоцитов. Помогая организму справиться с вирусным заболеванием, интерферон в то же время подавляет размножение собственных клеток организма, в том числе лимфоцитов. Именно поэтому при вирусных инфекциях наблюдается общее снижение иммунитета. Это же обстоятельство накладывает ограничения на использование в лечебных целях синтетического интерферона.

Неспецифические клеточные защитные механизмы. Неспецифический клеточный иммунитет обусловливают специальные клетки белой крови — лейкоциты и макрофаги, способные осуществлять фагоцитоз, т. е. уничтожать болезнетворные агенты и комплексы антиген-антитело. Фагоциты способны активно передвигаться к очагу воспаления и вступать в непосредственный контакт с чужеродной клеткой. Выпуская псевдоподии, они окружают такую клетку, образуя пузырек — фагосому, а затем постепенно ее переваривают.

Аллергические реакции. Иммунный ответ организма на вторжение болезнетворного или чужеродного агента должен быть адекватен, так как при недостаточной активности иммунной системы организм остается не полностью защищенным, а при чрезмерной активности возникают состояния гиперчувствительности. Именно к таким состояниям относятся разного рода аллергии. Чрезмерная чувствительность и реактивность организма в ответ на попадание в него сравнительно безобидных белков — серьезная проблема, часто сопровождающая детей раннего возраста, а порой и взрослых. В тяжелых случаях может возникать несовместимость с широким спектром продуктов питания, экологических и иных факторов. В большинстве случаев на сегодняшний день ситуация разрешается благодаря использованию разнообразных антигистаминных препаратов, частично снижающих иммунитет.

Иммунизация. Для формирования устойчивого иммунитета против многих заболеваний широко применяется активная иммунизация — обычно в форме вакцинации. В организм вводят либо ослабленный штамм болезнетворного агента, либо вырабатываемый им антиген в небольшом количестве. В результате развивается естественный иммунный ответ и формируется иммунная память, благодаря которой повторное внедрение в организм этого же болезнетворного микроба уже не застанет его иммунную систему врасплох. Именно в этом состоит смысл прививок, которые делают детям раннего возраста, а иногда и взрослым при угрозе эпидемий. В последние годы многие родители стараются избежать проведения прививок их детям, опасаясь аллергических реакций. Только опытный врач может в каждом конкретном случае определить, что более разумно: подвергать ребенка опасности заболеть тяжелой болезнью или подвергать его риску развития аллергической реакции.

При некоторых заболеваниях проводят пассивную иммунизацию: больному вводят антисыворотку против определенного антигена. Так лечат, например, бешенство и спасают от действия укусов ядовитых насекомых, пауков, змей и других животных. Во всех этих случаях лечение начинается уже после того, как вредоносное вещество попало в кровь, и вырабатывать иммунитет организма к этому веществу уже поздно, нужно срочно оказать помощь в уничтожении опасного для жизни чужеродного белка. Эту функцию и выполняет антисыворотка.

Вопросы и задания

1. Расскажите, из каких компонентов состоит кровь.

2. Чем отличается кровь ребенка от "крови взрослого по составу и свойствам?

3. Как реагируют компоненты крови на учебную и физическую нагрузку?

4. Чем отличаются лимфа и тканевая жидкость от крови?

5. Что такое гомеостаз? Приведите пример.

6. Что такое иммунитет, какие бывают виды иммунитета?

7. Какие клетки в организме отвечают за иммунные реакции?

8. Чем отличается иммунитет у детей?

9. Что такое иммунизация и для чего она проводится?


Наши рекомендации