Режимы сокращения мышц: изотонический и изометрический. Абсолютная сила мышц. Возрастные изменения силы мышц.
Сократительная способность скелетной мышцы характеризуется силой сокращения, которую развивает мышца (обычно оценивают общую силу, которую может развивать мышца, и абсолютную, т. е. силу, приходящуюся на 1 см2 поперечного сечения).длиной укорочения, степенью напряжения мышечного волокна, скоростью укорочения и развития напряжения, скоростью расслабления. Поскольку эти параметры в большой степени определяются исходной длиной мышечных волокон и нагрузкой на мышцу, исследования сократительной способности мышцы производят в различных режимах.
Раздражение мышечного волокна одиночным пороговым или сверхпороговым стимулом приводит к возникновению одиночного сокращения, которое состоит из нескольких периодов (рис. 2.23). Первый — латентный период представляет собой сумму временных задержек, обусловленных возбуждением мембраны мышечного волокна, распространением ПД по Т-системе внутрь волокна, образованием инозитолтрифосфата, повышением концентрации внутриклеточного кальция и активации поперечных мостиков. Для портняжной мышцы лягушки латентный период составляет около 2 мс.
Второй — период укорочения, или развития напряжения. В случае свободного укорочения мышечного волокна говорят об изотоническом режиме сокращения, при котором напряжение практически не изменяется, а меняется только длина мышечного волокна. Если мышечное волокно закреплено с двух сторон и не может свободно укорачиваться, то говорят об изометрическом режиме сокращение Строго говоря, при данном режиме сокращения длина мышечного волокна не изменяется, в то время как размеры саркомеров меняются за счет скольжения нитей актина и миозина относительно друг друга. В этом случае возникающее напряжение передается на эластические элементы, расположенные внутри волокна. Эластическими свойствами обладают поперечные мостики миозиновых нитей, актиновые нити, Z-пластинки, продольно расположенная саркоплазматическая сеть и сарколемма мышечного волокна.
В опытах на изолированной мышце выявляется растяжение соединительнотканных элементов мышцы и сухожилий, которым передается напряжение, развиваемое поперечными мостиками.
В организме человека в изолированном виде изотонического или изометрического сокращения не происходит. Как правило, развитие напряжения сопровождается укорочением длины мышцы — ауксотонический режим сокращение
Третий — период расслабления, когда уменьшается концентрация ионов Са2+ и отсоединяются головки миозина от актиновых филаментов.
Полагают, что для одиночного мышечного волокна напряжение, развиваемое любым саркомером, равно напряжению в любом другом саркомере. Поскольку саркомеры соединены последовательно, скорость, с которой происходит сокращение мышечного волокна, пропорциональна числу его саркомеров. Таким образом при одиночном сокращении скорость укорочения длинного мышечного волокна выше, чем у более короткого. Величина усилия, развиваемого мышечным волокном, пропорциональна числу миофибрилл в волокне. При мышечной тренировке число миофибрилл увеличивается, что является морфологическим субстратом увеличения силы сокращения мышц. Одновременно увеличивается и число митохондрии, повышающих выносливость мышечного волокна при физической нагрузке.
В изолированной мышце величина и скорость одиночного сокращения определяются рядом дополнительных факторов. Величина одиночного сокращения в первую очередь будет определяться числом двигательных единиц, участвующих в сокращении. Поскольку мышцы состоят из мышечных волокон с различным уровнем возбудимости, имеется определенная зависимость между величиной стимула и ответной реакцией. Увеличение силы сокращения возможно до определенного предела, после которого амплитуда сокращения остается неизменной при увеличении амплитуды стимула. При этом все мышечные волокна, входящие в состав мышцы, принимают участие в сокращении.
Важность участия всех мышечных волокон в сокращении показана при изучении зависимости скорости укорочения от величины нагрузки.
При нанесении второго стимула в период укорочения или развития мышечного напряжения происходит суммация двух следующих друг за другом сокращений и результирующий ответ по амплитуде становится значительно выше, чем при одиночном стимуле; если мышечное волокно или мышцу стимулировать с такой частотой, что повторные стимулы будут приходиться на период укорочения, или развития напряжения, то происходит полная суммация единичных сокращений и развивается гладкий тетанус (рис. 2.25, В). Тетанус — сильное и длительное сокращение мышцы. Полагают, что в основе этого явления лежит повышение концентрации кальция внутри клетки, что позволяет осуществляться реакции взаимодействия актина и миозина и генерации мышечной силы поперечными мостиками достаточно длительное время. При уменьшении частоты стимуляции возможен вариант, когда повторный стимул наносят в период расслабления. В этом случае также возникнет суммация мышечных сокращений, однако будет наблюдаться характерное западение на кривой мышечного сокращения (рис. 2.25, Г) — неполная суммация, или зубчатый тетанус.
При тетанусе происходит суммация мышечных сокращений, в то время как ПД мышечных волокон не суммируются.
В естественных условиях одиночные сокращения скелетных мышц не встречаются. Происходит сложение, или суперпозиция, сокращений отдельных нейромоторных единиц. При этом сила сокращения может увеличиваться как за счет изменения числа двигательных единиц, участвующих в сокращении, так и за счет изменения частоты импульсации мотонейронов. В случае увеличения частоты импульсации будет наблюдаться суммация сокращений отдельных двигательных единиц.
Одной из причин увеличения силы сокращения в естественных условиях является частота импульсов, генерируемых мотонейронами. Второй причиной этого служат увеличение числа возбуждающихся мотонейронов и синхронизация частоты их возбуждения. Рост числа мотонейронов соответствует увеличению количества двигательных единиц, участвующих в сокращении, а возрастание степени синхронизации их возбуждения способствует увеличению амплитуды при суперпозиции максимального сокращения, развиваемого каждой двигательной единицей в отдельности.
Сила сокращения изолированной скелетной мышцы при прочих равных условиях зависит от исходной длины мышцы. Умеренное растяжение мышцы приводит к тому, что развиваемая ею сила возрастает по сравнению с силой, развиваемой нерастянутой мышцей. Происходит суммирование пассивного напряжения, обусловленного наличием эластических компонентов мышцы, и активного сокращения. Максимальная сила сокращения достигается при размере саркомера 2—2,2 мкм (рис. 2.26). Увеличение длины саркомера приводит к уменьшению силы сокращения, поскольку уменьшается область взаимного перекрытия актиновых и миозиновых нитей. При длине саркомера 2,9 мкм мышца может развивать силу, равную только 50% от максимально возможной.
В естественных условиях сила сокращения скелетных мышц при их растяжении, например при массаже, увеличивается вследствие работы гамма-эфферентов.
Абсолютная мышечная сила - отношение максимальной силы мышцы к ее физиологическому поперечнику, т.е. максимальный груз, который поднимает мышца, деленный на суммарную площадь всех мышечных волокон. Сила сокращения, не остаются постоянными на всём протяжении жизни. В результате продолжительной деятельности работоспособность скелетной мускулатуры понижается. Это явление называется утомлением. При этом снижается сила сокращений, увеличиваются латентный период сокращения и период расслабления.