Глава 320. начала эндокринологии
Джин Д. Вилсон (Jean D. Wilson)
Функциональные свойства клеток определяются генетическими факторами, но скорость метаболических реакций в клетке регулируется в основном двумя взаимосвязанными и взаимодействующими системами —эндокринной и нервной. Вначале эти две системы рассматривали как отдельные, в зависимости от способа передачи информации — с помощью нервных импульсов или химических передатчиков, поступающих в кровь. В настоящее время стало ясно, что такое представление недостаточно полно. Дело не только в том, что нейромедиаторы, например норадреналин, могут циркулировать в крови как гормоны, но и в том, что нервные импульсы оказывают мощное влияние на секрецию химических посредников, таких как тестостерон и инсулин. Это тесное взаимодействие особенно очевидно в гипоталамусе, который является высшим интегративным центром обеих систем. Следовательно, интеграцию и координацию метаболических процессов в организме осуществляет единая нейроэндокринная система. Эндокринология занимается в основном химическими медиаторами в этой системе, но правильное понимание роли гормонов требует знания как автономной нервной системы (см. гл. 66), так и протекающих в клетке метаболических процессов.
В понятии эндокринология имеется и некоторая неопределенность. Термином «гормои» исходно обозначали вещества, секретирующиеся в кровь и действующие на ткани как химические эффекторы. Однако продуцировать такие химические медиаторы могут не только так называемые эндокринные органы. Например, такие гормоны, как ангиотензины II и III, образуются в самой крови, а тестостерон у женщин и дигидротестостерон и эстрадиол у мужчин частично секретируются, а частично образуются в периферических тканях из циркулирующих в крови предшественников (так называемых прогормонов). Отдельные химические медиаторы циркулируют лишь в ограниченных пространствах внеклеточной жидкости (например, в гипоталамо-гипофизарной портальной системе) и не попадают в существенных количествах в системный кровоток. Наконец, такие гормоны, как инсулин, дигидротестостерон и тиреотропин-рилизинг гормон (ТРГ), обладают паракринными эффектами в тех же тканях, в которых они образуются, а в отдаленных местах оказывают иное действие. Поэтому при решении вопроса, является ли данный эффектор гормоном, необходимо учитывать как его действие, так и происхождение.
Биохимия. Синтез. В настоящее время у млекопитающих известно более 60 гормонов. Они делятся на три группы — пептиды или производные пептидов, стероиды и амины и синтезируются одним из двух путей. Если происходит синтез пептидных гормонов, гены кодируют информационную РНК, которая затем транслируется в белковые предшественники. Эти белки подвергаются посттрансляционному расщеплению (препропаратиреоидный гормон ® пропаратиреоидный гормон ® паратиреоидный гормон и проинсулин ® инсулин) и/или процессингу (тиреоглобулин ® тироксин ® трийодтиронин), в результате чего образуется активный гормон, распознаваемый тканью-мишенью. В синтезе пептидных гормонов характерно то, что аминокислотную последовательность пептидов кодируют одни гены, а за превращение пептида в его конечную форму ответственны другие. В пептидных гормонах, состоящих из субъединиц, разные субъединицы могут происходить либо из одного (инсулин), либо из разных предшественников [лютеинизирующий гормон (ЛГ)]. Больше того, один и тот же пептидный гормон (соматостатин) может образовываться из разных прогормонов, кодируемых разными генами, а отдельные прогормоны, такие как проопиомеланокортин, могут метаболизироваться разными клетками в разные гормоны в зависимости от набора ферментов процессинга, присутствующего в данной клетке (см. гл. 69). Пептидные гормоны могут образовываться также эктопически при злокачественном перерождении неэндокринных органов, например, в раковой ткани легких (см. гл. 303).
При синтезе стероидных гормонов конечные продукты образуются в результате ферментативных превращений основного предшественника — холестерина (для большинства стероидных гормонов) или 7-дегидрохолестерина (для метаболитов витамина D). В превращении холестерина в эстрадиол участвуют не менее шести ферментов (или ферментных комплексов) и, следовательно, не менее шести разных генов. Из-за множественности необходимых ферментов синтез стероидов из холестерина раковыми клетками неэндокринных тканей маловероятен. Многие тканн, однако, неспособные образовывать стероидные гормоны из холестерина de novo, содержат ферменты, превращающие циркулирующие в крови стероиды в другие гормоны,как это происходит, например, при превращении андрогенов в эстрогены в опухолях трофобласта или прогестерона в дезоксикортикостерон в почках.
Гормоны, относящиеся к группе аминов, синтезируются в процессе реакций, аналогичных таковым при синтезе стероидных гормонов, за тем исключением, что предшественникам в данном случае служат аминокислоты. Например, предшественником адреналина и норадреналина является тирозин (см. гл. 66).
Запасание. Большинство тканей, синтезирующих гормоны, не обладает способностью запасать готовый продукт в достаточном количестве. Например, в тестикулах взрослого человека содержится лишь около 1/6 распадающегося в сутки количества тестостерона, и поэтому для обеспечения нормальной суточной секреции этого гормона его тестикулярный пул должен обновляться несколько раз в сутки. Даже в тех клетках, в которых имеются специальные органеллы для накопления гормона, запасаемое количество его обычно невелико: инсулиновые гранулы в панкреатических бета-клетках содержат такое количество инсулина, которого хватает лишь на короткое время, тогда как нервные окончания имеют запас норадреналина на несколько дней. Ограниченная способность некоторых тканей накапливать гормоны обусловлена тем, что последние не могут химически включаться ни в одну из трех основных форм запасаемых веществ (липиды, гликоген или белок). Например, большинство стероидных гормонов слишком полярны, чтобы в значительных количествах откладываться в липидах, а пептидные гормоны и амины не входят в состав белков. Поэтому содержание большинства гормонов в организме обычно невелико. Исключением являются те случаи, когда в белках или нейтральных липидах гормоны запасаются в виде предшественников: щитовидная железа содержит белок тиреоглобулин в количестве, достаточном для 2-недельной нормальной секреции тиреоидных гормонов, а предшественник и промежуточные формы витамина D могут в значительных количествах кумулироваться в липидах печени.
Секреция
Биохимические механизмы, принимающие участие в секреторном процессе, исследованы не полностью. Полагают, что в одних случаях происходит превращение нерастворимых веществ в их растворимые производные (протеолиз тиреоглобулина с образованием тиреоидных гормонов); в других секреция обусловлена экзоцитозом запасных гранул (инсулин, глюкагон, пролактин, гормон роста). Наконец, секреция может отражать пассивную диффузию свежесинтезируемых молекул, например стероидных гормонов, по градиенту концентрации в плазму; в этих условиях скорость секреции гормона могла бы отчасти определяться скоростью кровотока в ткани.
Из-за ограниченной способности к накапливанию большинство гормонов секретируется в плазму с той же скоростью, с какой образуется. Тропные гормоны гипофиза [ЛГ, адренокортикотропин (АКТГ), тиреотропин (ТТГ)] действуют на свои ткани-мишени, стимулируя одновременно и синтез, и секрецию гормонов этими тканями. Даже когда пептидные гормоны хранятся в гранулах, первоначальная секреция их сопровождается повышением скорости синтеза этих гормонов (например, при двухфазной секреции инсулина, вызываемой введением глюкозы). Секреция некоторых гормонов зависит от времени суток, сна или бодрствования, возраста и эмоционального состояния. Предполагают, что довольно часто наблюдается сопряжение между синтезом и секрецией.
Быстрая регуляция секреции многих гормонов изучена плохо. Некоторые гормоны секретируются импульсно, т. е. в виде повторяющихся выбросов. Зависит ли такая интермиттирующая секреция от изменений скоростей синтеза, кровотока или каких-то других механизмов, неизвестно. Хотя физиологическое значение пульсирующей секреции не до конца ясно, изменение частоты или амплитуды гормональных выбросов в большой степени сказывается на эффектах гормонов. Так, импульсное введение рилизинг-гормона лютеинизирующего гормона (ЛГРГ) стимулирует секрецию ЛГ гипофизом, а введение тех же количеств ЛГРГ с постоянной скоростью (в течение определенного времени) оказывает противоположный эффект. Больше того, изменение частоты или амплитуды гормональных выбросов может характеризовать определенные патологические состояния. Так, нарушение суточного ритма секреции кортизола характерно для ранней стадии болезни Кушинга.
Транспорт. Из мест синтеза к местам клеточного действия, метаболической инактивации и распада гормоны поступают с лимфой, кровью и внеклеточной жидкостью. Для большинства пептидных гормонов и аминов плазма, вероятно, является пассивным растворителем, а для стероидных и тиреоидных гормонов она служит источником специфических связывающих эти гормоны транспортных белков. Таким образом, чем менее гормон растворим в воде, тем более важна роль транспортных белков. Ни один из известных на сегодня транспортных белков не обладает в этом отношении исключительностью. Например, тестостерон может транспортироваться не только специфическим связывающим белком [тестостерон-эстрадполсвязывающий глобулин (ТЭСГ)], но и альбумином; тироксин транспортируется как преальбумином, так и тироксинсвязывающим глобулином (ТСГ). Гормон, связанный с белком (Г•Б), не может проникнуть в большинство внутриклеточных пространств и служит резервуаром, из которого свободный гормон (Г) путем диффузии поступает внутрь клетки: Г+Б Û Г•Б.
Соотношение связанного и свободного гормона в плазме зависит от количества гормона, количества связывающего белка и сродства белка к гормону. Однако эффективный уровень свободного гормона в организме зависит и от других факторов. Например, при высокой скорости диссоциации гормона из комплекса со связывающим белком (большей, чем скорость капиллярного кровотока в данном органе) на свободную (функционально активную) фракцию гормона влияют как скорость капиллярного кровотока, гак и проницаемость мембран.
Для оценки эндокринной функции большое значение имеет понимание отношений между свободным и связанным гормоном. Во-первых, свободной (диализуемой) фракции гормона in vitro обычно меньше, чем свободной фракции, существующей in vivo. Это объясняется тем, что часть гормона, находящаяся в комплексе со слабо связывающими его белками, такими как альбумин (в противовес той части, которая находится в комплексе со специфическими связывающими белками, обладающими высоким сродством к гормону), быстро отсоединяется от альбумина по мере того, как свободная фракция диффундирует из капилляров в ткани. Следовательно, гормон, связанный с альбумином in vivo. может функционировать как свободная фракция. При многих состояниях величина диализуемой фракции служит надежным показателем кажущейся свободной фракции in vivo. Однако в условиях гипоальбуминемии содержание свободной (диализуемой) фракции in vitro может увеличиваться, тогда как in vivo уровень свободного гормона снижается. Кроме того, в тех тканях, например, в печени, где белки (в том числе и комплексы гормонов с транспортными белками) подвергаются разрушению (в отличие от других тканей, где в клетки проникает только свободный гормон), количество поступающего в ткань гормона в меньшей степени зависит от величины свободной фракции последнего.
Во-вторых, распределение гормонов между плазмой и тканью зависит от соотношения тканевых и плазматических связывающих белков. Поэтому истинные или кажущиеся уровни свободного гормона не отражают количество гормона в клетках.
В-третьих, только свободный гормон взаимодействует с периферическими клетками и участвует в регуляторных механизмах образной связи, контролирующих скорость гормонального синтеза. Вследствие этого изменения количества транспортного белка в равновесных условиях не могут вызывать эндокринной патологии, если, конечно, не нарушены остальные звенья обратной связи в эндокринной системе. Например, резкое повышение или понижение уровня ТСГ (в силу генетических пли иных факторов) вовсе не обязательно будет сопровождаться изменением тиреоидного статуса. Так, внезапное увеличение уровня ТСГ приведет к снижению содержания свободного (диализуемого) и связанного с альбумином гормона; это должно обусловить повышение секреции ТТГ и продукции тироксина щитовидной железой, которая будет нарастать до тех пор, пока ТСГ снова не окажется насыщенным, а уровень свободного гормона вернется к норме, что в свою очередь нормализует уровень ТТГ и секрецию тиреоидных гормонов. В обратной ситуации снижение количества ТСГ временно повысит содержание свободного гормона, а секреция ТТГ и тироксина будет снижаться до тех пор, пока этот уровень не вернется к норме. Таким образом, можно сказать, что при изменении количества специфического белка, связывающего гормон с высоким сродством, может резко измениться уровень гормона, но само по себе это не может вызвать длительных симптомов избытка или недостаточности гормона, если только не нарушены регуляторные механизмы обратной связи, контролирующие синтез гормона. Однако в тех случаях, когда образование гормона не регулируется обычными механизмами обратной связи, изменение количества связывающего белка может послужить причиной эндокринной патологии. Например, у женщин уровень тестостерона непосредственно не регулирует его продукцию, и поэтому изменение количества ТЭСГ может обусловить хроническое изменение уровня свободного тестостерона.
Распад и кругооборот. Уровень любого гормона в плазме (УП) зависит от двух факторов — скорости секреции (СС) гормона и скорости его метаболизма и экскреции, совместно называемой скоростью метаболического клиренса (СМК): УП=СС/СМК или
СС=СМК•УП.
Метаболический клиренс гормона осуществляется рядом механизмов. Небольшое количество интактного гормона выводится из организма с мочой и желчью. В тканях-мишенях, тканях, не являющихся мишенями (такие как печень и почки) или в тканях обеих групп гормон разрушается и инактивируется. Довольно часто метаболизм гормона облегчает его экскрецию, делая его способным растворяться в моче или желчи. Пептидные гормоны инактивируются, как правило, протеазами тканей-мишеней. Тиреоидные гормоны дейодируются, дезаминируются и деконъюгируют в основном в печени. Стероидные гормоны восстанавливаются, гидроксилируются и конъюгируют с остатками глюкуроновой и серной кислот. Иногда конъюгаты с желчными кислотами в желудочно-кишечном тракте гидролизуются и вновь всасываются в кровь. Механизмы разрушения разных гормонов имеют одну общую черту: катаболизм всех известных на сегодня гормонов может протекать по альтернативным путям.
Из-за особенностей регуляторного механизма обратной связи изменение скорости распада гормона само по себе не может служить причиной эндокринной патологии, если только не нарушена обратная связь, которая регулирует синтез этого гормона. Например, при тяжелых заболеваниях печени и при микседеме нарушается деградация глюкокортикоидов в печени; в результате кругооборот кортизола замедляется, но его уровень в плазме не увеличивается, так как секреция АКТГ оказывается заторможенной. Таким образом, нормальный уровень свободного гормона поддерживается в результате снижения скорости секреции кортизола. Обратная ситуация наблюдается при ускорении распада глюкокортикоидов (как при тиреотоксикозе); в такой ситуации нормальный уровень гормона обеспечивается возрастанием его секреции.
Хотя изменения скорости распада гормона сами по себе не приводят к его дефициту или избытку, они имеют большое значение для эндокринной фармакологии. Так, у больных с микседемой или патологией печени глюкокортикоиды даже в обычных дозах могут вызывать синдром Кушинга, поэтому их дозировку необходимо снижать. Напротив, при гипертиреозе дозы глюкокортикоидов следовало бы увеличивать. Кроме того, возникновение гипертиреоза у лиц с недостаточными резервами надпочечников могло бы (за счет ускорения катаболизма глюкокортикоидов) вызвать адреналовый криз. Таким образом, при нарушении или отсутствии нормальных сервомеханизмов, регулирующих синтез гормонов, изменение скорости их распада может либо утяжелять, либо вызывать эндокринную патологию.
Регуляция продукции гормонов. Выше отмечалось, что уровень гормонов у здорового человека колеблется в результате изменения скорости их продукции, а последняя прямо или косвенно регулируется метаболической активностью самого гормона. Такая регуляция осуществляется за счет существования ряда петель обратной связи (рис. 320-1). В некоторых случаях необходимо, чтобы уровень гормона в крови был строго постоянным. Поэтому должны существовать какие-то сенсорные механизмы, следящие либо за уровнем самого гормона, либо за состоянием регулируемых им функций, таких как осмоляльность плазмы, концентрация глюкозы в крови, уровень кальция в плазме или содержание натрия в организме. Например, гормоны (кортизол, тироксин, половые стероиды), выделяющиеся под влиянием гипофизарных тропных гормонов, оказывают обратное действие на гипоталамо-гипофизарную систему, регулируя скорость собственной секреции. Подобно этому, секреция паратиреоидного гормона и инсулина зависит от обратных сигналов со стороны соответственно уровня кальция в сыворотке и глюкозы в крови. Системы обратных связей обычно более сложны, чем описанная схема; иногда они включают ряд промежуточных звеньев. В тех случаях, когда в роли обратного сигнала выступает непосредственно сам гормон (как, например, при действии тестостерона на гипофиз), его эффект обусловливается теми же клеточными механизмами, которые определяют его действие и в других тканях-мишенях.
Рис. 320-1. Гипофизарная регуляция таких эндокринных органов, как надпочечники, щитовидная железа или гонады, по механизму обратной связи.
Обратная связь может быть как отрицательной, так и положительной. Примером положительной обратной связи служит стимуляция секреции Л Г эстрадиолом перед овуляцией. На регуляторные механизмы положительной или отрицательной обратной связи или на их реактивность могут влиять факторы негормональной природы и внешней среды.
Характерная особенность систем обратной связи — быстрота функционирования. Действительно, в ответ на меняющиеся метаболические потребности большинство таких связей срабатывает за несколько минут или часов, обеспечивая гомеостаз в узких границах. Исключения связаны с регуляцией гаметогенеза в яичниках и семенниках (см. гл. 330 и 331). В обоих случаях в действие вступают сложные процессы дифференцировки. В состоянии равновесия эти системы функционируют так, что продукция сперматозоидов постоянно остается относительно стабильной, а овуляция протекает циклично. Однако для завершения сперматогенеза требуется примерно месяц, и поэтому изменения уровня ФСГ долгое время могут не сказываться на скорости продукции сперматозоидов.
Тот факт, что секреция гормонов находится под регуляторным контролем, имеет важное клиническое значение. Во-первых, оценить клиническое значение уровня гормона в плазме можно только с учетом состояния соответствующих регуляторных факторов (рис. 320-2). Понять, о чем свидетельствует некоторое снижение уровня тестостерона, можно лишь при одновременном определении уровня ЛГ. Точно так же, интерпретировать те или иные уровни инсулина ч паратиреоидного гормона в плазме можно лишь при одновременном определении соответственно содержания глюкозы и кальция в плазме. Во-вторых, данные об одновременном повышении уровня гормональных пар (пара гормон — регуляторный фактор) при отсутствии признаков избытка гормона указывают на существование резистентности к последнему. Например, одновременно повышенное содержание в плазме глюкозы и инсулина характерно для инсулинорезистентности; одновременное повышение уровней ЛГ и тестостерона свидетельствует о резистентности к андрогенам и т. д. В-третьих, понимание механизмов регуляции секреции гормонов составляет основу различных динамических тестов на резервы и секрецию гормонов.
Механизмы действия гормонов. Первый этап действия гормонов заключается в их взаимодействии со специфическими макромолекулами клетки, так называемыми гормональными рецепторами, расположенными либо на плазматической мембране клеточной поверхности, либо в цитоплазме.
Гормоны, рецепторы которых расположены на поверхности клеток. Гормоны первого типа связываются поверхностными рецепторами, расположенными на плазматической мембране (рис. 320-3). Различают три вида взаимодействия гормонов с плазматической мембраной. При взаимодействии первого вида (Г, на рис. 320-3) гормонрецепторный комплекс, находящийся на поверхности клеток, вызывает образование так называемого второго посредника — циклического аденозин-3',5'-монофосфата (цАМФ), и последующие действия гормона опосредуются цАМФ (подробнее см. гл. 67). Этот механизм характерен для некоторых белковых гормонов и биогенных аминов. При взаимодействии второго вида (Г, на рис. 320-3) рецептор клеточной поверхности индуци
Рис. 320-2. Связь между уровнем гормона железы-мишени и уровнем тропного гормона в норме и при патологических состояниях (например, между ТТГ и тиреоидными гормонами, АКТГ и кортизолом, ЛГ и тестостероном).
Рис. 320-3. Схема действия гормонов, рецепторы которых расположены на поверхности клетки.
Обозначения: Г— гормон, Р — рецептор, К — каталитическая субъединица протеинкиназы, Ц — цАМФ-связывающая субъединица протеинкиназы, цАМФ-циклический АМФ, АЦ— аденилатциклаза, С — субстрат, СФ — фосфорилированный субстрат, ФДЭ — фосфодиэстераза.
рует продукцию или высвобождение иных вторых посредников, например кальция. Этот механизм характерен для некоторых нейротрансмиттеров и РТГ. Механизм высвобождения кальция и его действия в такой системе неизвестен; возможно, действие кальция проявляется в его связывании с белком, регулирующим активность ферментов, — кальмодулином. При взаимодействии третьего вида (Г, на рис. 320-3) комплекс поверхностный рецептор — гормон интернализуется внутрь клетки, но последующие события остаются неясными. К последней категории гормонов относится инсулин (см. гл. 327).
Из этих систем лучше изучены те, в которых вторым посредником служит цАМФ (см. рис. 320-3). Концентрация цАМФ в клетке регулируется двумя ферментами, обладающими противоположной активностью. Аденилатциклаза (АЦ), локализованная в плазматической мембране, превращает аденозинтрифосфат (АТФ) в цАМФ. Фосфодиэстераза (ФДЭ), находящаяся в основном в цитозоле клетки, инактивирует цАМФ, превращая его в 5'-аденозинмонофосфат (5'-АМФ). Гормоны (Г1), действующие на клеточную поверхность, образуют обратимые комплексы со специализированными белковыми рецепторами мембраны (Р1). Эти белки обладают высоким сродством к гормону, но имеют ограниченную емкость. Образование гормонрецепторного комплекса приводит к стимуляции аденилатциклазы. Комплекс Г1Р1 связывает N-субъединицу аденилатциклазы (которая связывает и ГТФ) и активирует каталитическую субъединицу АЦ, стимулируя тем самым синтез цАМФ. Фосфорилирующиеся ферменты, известные под названием протеинкиназ, играют, по-видимому, ключевую роль в общем процессе. Эти киназы (ЦК) состоят из каталитических (К) и регуляторных (Ц) субъединиц. Связывание цАМФ с Ц высвобождает К, что приводит к фосфорилированию различных белков (С), сопровождающемуся их активацией или инактивацией.
Гормоны, рецепторы которых расположены внутри клетки.Стероидные и тиреоидные гормоны транспортируются в плазме, будучи связанными с белками-носителями (рис. 320-4). Белково-связанные гормоны (ГБ) находятся в динамическом равновесии с небольшими количествами свободных гормонов (Г), которые пассивно диффундируют в клетки, где они действуют принципиально иным образом, чем пептидные гормоны. В большинстве случаев основная секретируемая в плазму форма гормона (кортизол, прогестерон, альдостерон, эстрадиол) не подвергается дальнейшему метаболизму, и именно она обусловливает гормональный эффект в клетке-мишени. Другие гормоны (тироксин, тестостерон) подвергаются химическому превращению в более активные формы (трийодтиронин, дигидротестостерон).
Гормон связывается специфическим рецепорным белком(Р) цитоплазмы, образуя гормонрецепторный комплекс (ГР). Последний в ходе недостаточно изученного зависимого от температуры процесса подвергается трансформации, образуя активированный комплекс (ГР'), способный связываться хроматином. В результате этого связывания образуются новые молекулы информационных РНК (мРНК) и усиливается синтез цитоплазматических белков. Последние в свою очередь опосредуют эффекты гормона. В некоторых случаях (трийодтиронин и отдельные стероиды) незанятые рецепторные белки локализуются преимущественно в ядрах; при этом свободный гормон проникает в ядро, где и образуется активный гормонрецепторный комплекс, аналогичным образом присоединяющийся к хроматину.
Рис. 320-4. Механизм действия гормонов, рецепторы которых расположены внутри клетки.
Обозначения : Г — гормон, Б — транспортныи белок плазмы, Р — рецептор. Р• — активированнып рецептор. мРНК — информационная (мессенджер) РНК.
Оценка гормональной функции. На практике эндокринный статус оценивают путем определения уровней гормонов в плазме, экскреции гормонов или некоторых из метаболитов с мочой, скорости секреции гормонов, проведения динамических тестов на резервы и регуляцию гормонов, исследования гормональных рецепторов и отдельных эффектов гормонов в тканях-мишенях или с помощью комбинации таких подходов. Каждая из этих методик оказывается полезной в конкретных клинических ситуациях.
Уровень гормона в плазме. Содержание стероидных и тиреоидных гормонов в плазме колеблется от 1 нМ до 1 мкМ, а пептидных гормонов — от 1 пМ до 0,1 нМ. Применение новейших химических, хроматографических, радиорецепторных и радиоиммунологических методик для определения веществ, присутствующих в плазме в низких концентрациях, явилось одним из крупных достижений современной медицины. Для оценки гормонального статуса в большинстве клинических ситуаций достаточно однократного определения содержания гормонов, уровень которых в плазме относительно стабилен в разное время суток и в разные сутки (тироксин и трийодтиронин).
Однако по ряду причин к результатам таких определений следует относиться с осторожностью. Во-первых, химические и радиоиммунологические методы позволяют получить правильное представление о содержании в плазме в данный момент только гормонов с относительно простой структурой (стероидные и тиреоидные гормоны). У более сложных пептидных гормонов структуры физиологически активных гормональных молекул в плазме могут существенно варьировать, причем с помощью специфических радиоиммунологических методик некоторые из них плохо поддаются определению. Например, стандартные радиоиммунологические методики определения ЛГ и паратиреоидного гормона могут подчас давать заниженные или завышенные результаты, характеризующие количество биологически активного гормона в плазме. В таких ситуациях для оценки эндокринного статуса можно применять радиорецепторные или биологические методы определения гормонов in vitro.
Во-вторых, при определении гормонов, секреция которых имеет пульсирующий характер (ЛГ, тестостерон), нельзя быть уверенным в том, что результат однократного определения отражает средний уровень гормона в плазме. В этих случаях определение нужно проводить либо в нескольких пробах плазмы, отбираемых случайным образом, либо в аликвотах объединенных трех — четырех проб плазмы, отбираемых с 20—30-минутными интервалами.
В-третьих, когда уровень гормона в плазме колеблется (например, суточные колебания концентрации кортизола), отбор проб плазмы можно приурочить к тому времени, которое позволяет точнее судить о гормональном статусе. Однако и при этом следует помнить, что уровень гормона в плазме может колебаться в течение суток только в определенные периоды жизни (содержание ЛГ в ранние стадии пубертата). Правильная интерпретация содержания гонадотропинов, прогестерона и эстрадиола в плазме крови женщин детородного возраста требует учета фазы овуляторного и менструального циклов, и иногда, чтобы получить поддающиеся интерпретации данные, приходится последовательно проводить анализы в течение многих дней. Уровень некоторых гормонов (таких как тироксин и тестостерон) зависит и от сезонных колебаний, но они обычно столь малы, что не влияют на интерпретацию отдельных результатов. Иногда колебания уровня гормонов обусловлены не какой-то явной ритмичностью, а обострениями и затуханиями патологического процесса. Так, для диагностики синдрома Кушинга или гиперпаратиреоза могут потребоваться повторные определения содержания кортизола или кальция и паратиреоидного гормона в течение многих месяцев.
В-четвертых, если речь идет о стероидных и тиреоидных гормонах, которые присутствуют в плазме в основном в связанном с белками виде, определение общей концентрации их дает представление об эндокринном статусе только в той степени, в какой оно позволяет судить об уровне свободного, или несвязанного, гормона. На самом деле содержание свободных гормонов (как правило, 1% или меньше от общего их содержания) определяют лишь в немногих лабораториях. Так как количество свободного гормона зависит от количества и сродства связывающих транспортных белков и общего количества гормона, последнее отражает уровень свободного гормона лишь постольку, поскольку количество связывающего белка (белков) остается постоянным или колеблется лишь в узких пределах. При повышении содержания связывающего белка (ТСГ и ТЭСГ при беременности) или его снижении [наследственное снижение ТСГ и кортикостероидсвязывающего глобулина (КСГ)], чтобы судить об уровне свободного гормона, следует применять методы, позволяющие определять количества связывающего белка (поглощение Т, смолой для ТСГ или прямое определение ТСГ, ТЭСГ или КСГ).
В-пятых, концентрация большинства гормонов в плазме среди здорового населения колеблется в широких пределах. Следовательно, у какого-либо человека уровень гормона может снижаться или возрастать даже вдвое (и это будет резким нарушением для данного человека), но все еще оставаться в так называемых нормальных пределах. Поэтому часто возникает необходимость одновременного определения уровня соответствующих гормональных пар (ЛГ и тестостерон, тироксин и ТТГ). Уровень тестостерона на нижней границе нормы на фоне повышенного содержания ЛГ в плазме указывает на недостаточность семенников, тогда как тот же уровень тестостерона при нормальной концентрации ЛГ свидетельствует о нормальном эндокринном статусе (см. рис. 320-2). Подобно этому, у женщин с повышенной продукцией тестостерона и вторичным снижением уровня ТЭСГ концентрация тестостерона в плазме может быть нормальной, несмотря на нарушение его продукции.
Экскреция с мочой. Определение экскреции гормона или его метаболита с мочой, что отражает уровень данного гормона в плазме или скорость его секреции, обладает некоторыми преимуществами перед отдельным определением его уровня в плазме, так как дает представление о средней концентрации гормона в плазме за период сбора мочи. Действительно, уровень свободного кортизола в суточной моче может лучше отражать функцию коры надпочечников, чем результат однократного определения концентрации кортизола в плазме. Однако опять-таки необходимо учитывать определенные ограничения такого подхода. 1. Чтобы убедиться в правильности сбора мочи, всегда следует определять содержание в ней креатинина. Женщины экскретируют в сутки примерно 1 г, а мужчины 1,8 г креатинина. Различия в разные дни не должны превышать 20%. 2. Не при всех состояниях экскреция отдельных метаболитов отражает изменения в секреции гормона. Например, на образование 18-оксо-производного альдостерона могут влиять фармакологические средства, не меняющие секрецию гормона или его уровень в плазме. 3. Содержание гормонов в моче, очевидно, не отражает динамику тех из них (тироксин, трийодтиронин), которые экскретируются с желчью. Еще более важен тот факт, что пептидные гормоны, такие как гонадотропины, у разных лиц могут метаболизироваться по-разному, прежде чем попадут в мочу. Поэтому установить границы нормы для экскреции соответствующих метаболитов весьма трудно. 4. Гормоны, образующиеся в разных железах, могут экскретироваться в виде общих метаболитов. Так, 17-кетостероны мочи образуются из андрогенов как надпочечников, так и половых желез, и их определение поэтому мало что говорит о тестикулярной продукции андрогенов у мужчин. 5. На скорость экскреции гормонов с мочой могут влиять нарушения функции почек. Эти влияния удается отчасти нивелировать определением креатинина в моче, но в случае метаболитов или конъюгатов, образующихся в самих почках, их экскреция может меняться непропорционально снижению клиренса креатинина.
Скорости секреции и продукции. Определение реальной скорости секреции гормона позволяет избежать многих неясных моментов, возникающих при измерении уровня гормона в плазме и его экскреции с мочой. Методика таких измерений включает введение радиоактивного гормона и учет разведения, которому подвергается метка вследствие смешивания с эндогенно секретируемым за определенное время нерадиоактивным гормоном. На практике выделяют из плазмы сам гормон, а из мочи — его специфический метаболит, очищают их до радиохимической гомогенности и полученный результат (в цифровом выражении) используют для расчета секретируемого за время исследования количества гормона. Если речь идет о гормонах, образующихся главным образом в периферических тканях (эстрадиол и дигидротестостерон у мужчин, трийодтиронин у мужчин и женщин), можно вводить меченые предшественники и для оценки общей скорости продукции измерять скорость их превращения в данные метаболиты. Возможен и иной подход к определению скорости секреции. Для этого нужно знать скорость клиренса гормона и средний его уровень к плазме. К сожалению, все эти методики сложны и трудоемки, требуют применения радиоактивных изотопов и могут выполняться лишь в немногих центрах.
Дииамические тесты на резервы гормонов и гормональную регуляцию. При выраженной гипо- или гиперфункции эндокринной железы для постановки диагноза достаточно определить уровень гормона в крови или моче, особенно если тестирование обнаруживает сохранность обратных связей. Например, низкий уровень тестостерона в плазме па фоне высокого содержания в ней ЛГ указывает на первичную недостаточность тестикул. Однако в менее ясных случаях, чтобы оценить значение некоторого снижения уровня гормона, целесообразно использовать стимуляционные тесты. Точно так же для доказательства гиперфункции той или иной эндокринной железы применяют тесты на подавление (супрессивные). Все динамические тесты такого рода направлены на лучшую оценку состояния