Тема: Обмен жирных кислот, регуляция
Строение жирных кислот
Жирными кислотами (ЖК) - называются карбоновые кислоты, которые образуются при гидролизе омыляемых липидов.
В основном к жирным кислотам относятся высшие карбоновые кислоты (содержащие 12 и более атомов С). Такие ЖК водонерастворимыми, они транспортируются в крови с помощью альбуминов, а в клетках - с помощью Z-белков.
ЖК человека и животных имеют некоторые особенности строения: 1) они монокарбоновые; 2) содержат четное количество атомов С, самая распространенная длина от 16 до 18 атомов С; 3) углеродный скелет неразветвлен; 4) бывают насыщенными и ненасыщенными (мононенасыщенными и полиненасыщенными); 5). двойные связи несопряжены (разделены метиленовыми мостиками) и имеют цис-конформацию.
№ | Жирная кислота | Индекс ЖК | ∆ ЖК | ω ЖК |
Лауриновая | 12:0 | |||
Миристиновая | 14:0 | |||
Пальмитиновая | 16:0 | |||
Пальмитолеиновая | 16:1 | ∆9 | ω9 | |
Стеариновая | 18:0 | |||
Олеиновая | 18:1 | ∆9 | ω9 | |
Линолевая | 18:2 | ∆9,12 | ω6 | |
Линоленовая | 18:3 | ∆9,12,15 | ω3 | |
Октадекатетраеновая | 18:4 | ∆5,8,11,14 | ω3 | |
Арахиновая | 20:0 | |||
Гадолеиновая | 20:1 | ∆9 | ω9 | |
Эйкозатриеновая | 20:3 | ∆8,11,14 | ω6 | |
Арахидоновая | 20:4 | ∆5,8,11,14 | ω6 | |
Эйкозапентаеновая | 20:5 | ∆5,8,11,14,17 | ω3 | |
Бегеновая | 22:0 | |||
Эруковая | 22:1 | ∆13 | ω9 | |
Андреновая | 22:4 | ∆9,12,15,18 | ω6 | |
Докозапентаеновая | 22:5 | ∆4,7,10,13,16 | ω6 | |
Докозагексаеновая | 22:6 | ∆4,7,10,13,16,19 | ω3 | |
Лигноцериновая | 24:0 | |||
Невроновая | 24:1 | ∆15 | ω9 | |
Цереброновая | 24:0 | α-гидрокси ЖК |
∆ ЖК – номера атомов С, у которых расположены двойные связи.
ω ЖК - число атомов С от последней двойной связи до конца цепи.
Биологическое значение ЖК
- полиеновые ЖК (арахидоновая, эйкозапентаеновая, эйкозатриеновая) используются для синтеза БАВ – эйкозаноидов (простагландинов, простациклинов, тромбоксанов, лейкотриенов, липоксинов).
- ЖК окисляются в аэробных условиях с образованием АТФ;
- ЖК являются структурным компонентом омыляемых липидов: восков, глицеролипидов, сфинголипидов, эфиров холестерина;
КАТАБОЛИЗМ ЖИРНЫХ КИСЛОТ
В живых организмах катаболизм ЖК протекает как в ферментативных так и в неферментативных реакциях.
· Ферментативный катаболизм ЖК происходит в основном в реакциях β-окисления. К побочным путям относиться ферментативное α- и ω-окисление ЖК, а также деградация ЖК в пероксисомах. Хотя эти побочные пути количественно менее важны, их нарушение может приводить к тяжелым заболеваниям.
· Неферментативный катаболизм ЖК протекает в реакциях перекисного окисления липидов (ПОЛ).
β-окисление ЖК
β-окисление — специфический путь катаболизма ЖК с неразветвленной средней и короткой углеводородной цепью. β-окисление протекает в матриксе митохондрий, при котором от С конца ЖК последовательно отделяется по 2 атома С в виде Ацетил-КоА. β-окисление ЖК происходит только в аэробных условиях и является источником большого количества энергии.
β-окисление ЖК активно протекает в красных скелетных мышцах, сердечной мышце, почках и печени. ЖК не служат источником энергии для нервных тканей, так как ЖК не проходят через гематоэнцефалический барьер, как и другие гидрофобные вещества.
β-окисление ЖК увеличивается в постабсорбтивный период, при голодании и физической работе. При этом концентрация ЖК в крови увеличивается в результате мобилизации ЖК из жировых ткани.
Активация ЖК
Активация ЖК происходит в результате образования макроэргической связи между ЖК и HSКоА с образованием Ацил-КоА. Реакцию катализирует фермент Ацил-КоА синтетаза:
RCOOH + HSKoA + АТФ → RCO~SКоА + АМФ+ PPн
Пирофосфат гидролизуется ферментом пирофосфатазой: Н4Р2О7 + Н2О → 2Н3РО4
Ацил-КоА синтетазы находятся как в цитозоле (на внешней мембране митохондрий), так и в матриксе митохондрий. Эти ферменты отличаются по специфичности к ЖК с различной длиной углеводородной цепи.
Транспорт ЖК
Транспорт ЖК в матрикс митохондрий зависит от длины углеродной цепи.
ЖК с короткой и средней длиной цепи (от 4 до 12 атомов С) могут проникать в матрикс митохондрий путём диффузии. Активация этих ЖК происходит ацил-КоА синтетазами в матриксе митохондрий.
ЖК с длинной цепью, сначала активируются в цитозоле (ацил-КоА синтетазами на внешней мембране митохондрий), а затем переносятся в матрикс митохондрий специальной транспортной системой с помощью карнитина. Карнитин поступает с пищей или синтезируется из лизина и метионина с участием витамина С.
· В наружной мембране митохондрий фермент карнитинацилтрансфераза I (карнитин-пальмитоилтрансфераза I) катализирует перенос ацила с КоА на карнитин с образованием ацилкарнитина;
· Ацилкарнитин проходит через межмембранное пространство к наружной стороне внутренней мембраны и транспортируется с помощью карнитинацилкарнитинтранслоказы на внутреннюю поверхность внутренней мембраны митохондрий;
· Фермент карнитинацилтрансфераза II катализирует перенос ацила с карнитина на внутримитохондриальный HSКоА с образованием Ацил-КоА;
· Свободный карнитин возвращается на цитозольную сторону внутренней мембраны митохондрий той же транслоказой.
Реакции β-окисление ЖК
1. β-окисление начинается с дегидрирования ацил-КоА ФАД-зависимой Ацил-КоА дегидрогеназой с образованием двойной связи (транс) между α- и β-атомами С в Еноил-КоА. Восстановленный ФАДН2 окисляясь в ЦПЭ, обеспечивает синтез 2 молекул АТФ;
2. Еноил-КоА гидратаза присоединяет воду к двойной связи Еноил-КоА с образованием β-оксиацил-КоА;
3. β-оксиацил-КоА окисляется НАД зависимой дегидрогеназой до β-кетоацил-КоА. Восстановленный НАДН2, окисляясь в ЦПЭ, обеспечивает синтез 3 молекул АТФ;
4. Тиолаза с участием HКоА отщепляет от β-кетоацил-КоА Ацетил-КоА. В результате 4 реакций образуется Ацил-КоА, который короче предыдущего Ацил-КоА на 2 углерода. Образованный Ацетил-КоА окисляясь в ЦТК, обеспечивает синтез в ЦПЭ 12 молекул АТФ.
Затем Ацил-КоА снова вступает в реакции β-окисления. Циклы продолжаются до тех пор, пока Ацил-КоА не превратится в Ацетил-КоА с 2 атома С (если ЖК имела четное количество атомов С) или Бутирил-КоА с 3 атомами С (если ЖК имела нечетное количество атомов С).