Строение органа зрения. Адаптация глаза. Аккомодация. Близорукость и дальнозоркость. Острота зрения. Проводящие пути органа зрения.
Строение органа зрения. Орган зрения состоит из глазного яблока и вспомогательного аппарата. В глазном яблоке содержится периферический отдел зрительного анализатора. Глаз человека состоит из внутренней оболочки (сетчатки), сосудистой и внешней белковой оболочки.
Внешняя оболочка состоит из двух частей — склеры и роговицы.
Непрозрачная склера занимает 5/6 поверхности внешней оболочки, прозрачная роговица — 1/6. Сосудистая оболочка состоит из трех частей радужки, реснитчатого тела и собственно сосудистой оболочки. В центре радужки находится отверстие — зрачок, через который лучи света проникают внутрь глаза. Она содержит пигменты, от которых зависит цвет глаз. Радужная оболочка переходит в тело, а то, в свою очередь, в собственно сосудистую оболочку. Сетчатка — это внутренняя оболочка глаза. Она имеет сложное слоистое строение — из нервных клеток и их волокон.
Различают десять слоев сетчатки. К внешнему пигментному слою сетчатки подходят палочки и колбочки, которые являются видоизмененными отростками светочувствительных зрительных клеток. От нервных клеток сетчатки идет зрительный нерв — начало ведущей части зрительного анализатора.
Схема анатомического строения глаза: 1 — сетчатка, 2 ~ хрусталик, 3 радужная оболочка, 4 роговица, 5 — баковая оболочка (склера), 6 — сосудистая оболочка, 7 — зрительный нерв.
Склеристое тело — вполне прозрачное вещество, которое содержится в очень нежной капсуле и наполняет большую часть глазного яблока. Оно выступает захламливающей средой и входит в часть оптической системы глаза. Передней, слегка вогнутую поверхность оно прилегает к задней поверхности хрусталика. Его потеря не пополняется.
В верхнем боковом углу глазницы содержится слезная железа, которая выделяет слезную жидкость (слезу), увлажняющий поверхность глазного яблока, предотвращает ее подсыхание и переохлаждению. Слеза, увлажнив поверхность глаза, стекает выездным каналом в носовой полости. Веки и ресницы защищают глазное яблоко от того, чтобы внутрь глаза не попадали посторонние частицы, брови отводят в сторону пот, стекающий со лба, а это также имеет защитное значение.
Адаптация глаза
Выработка способности глаза видеть при различной освещенности называют адаптацией. Если вечером в комнате погасить свет, то сначала человек совершенно не различает окружающих предметов. Однако
уже через 1-2 мин она начинает схватывать контуры предметов, а еще через несколько минут видит предметы достаточно четко. Это происходит благодаря изменению чувствительности сетчатки в темноте. Пребывание в темноте в течение одного часа повышает чувствительность глаза примерно в 200 раз. И особенно быстро возрастает чувствительность в первые минуты.
Это явление объясняется тем, что при ярком свете зрительный пурпур палочковидных зрительных клеток разрушается полностью. В темноте он быстро восстанавливается, и палочковидные клетки, очень чувствительны к свету, начинают выполнять свои функции, тогда как колбочко подобные, малочувствительны к свету, не способны воспринимать зрительные раздражения. Вот почему человек в темноте не различает цветов.
Однако когда в темном помещении включить свет, он как бы ослепляет человека. Она почти не различает окружающих предметов, и через 1-2 мин ее глаза начинают видеть хорошо. Это объясняется тем, что зрительный пурпур в палочковидных клетках разрушился, чувствительность к свету резко снизилась и зрительные раздражения теперь воспринимаются только колбочкоподибнимы зрительными клетками.
Аккомодация глаза
Способность глаза видеть предметы на разном расстоянии называют аккомодацией. Предмет хорошо видно тогда, когда лучи, отраженные от него, собираются на сетчатке. Это достигается изменением выпуклости хрусталика. Изменение же наступает рефлекторно — при рассмотрении предметов, находящихся на разном расстоянии от глаза. Когда мы смотрим на расположенные около предметы, выпуклость хрусталика увеличивается. Преломления лучей в глазу становится больше, в результате чего на сетчатке возникает изображение. Когда мы смотрим вдаль, хрусталик сплющивается.
В состоянии покоя аккомодации (взгляд вдаль) радиус кривизны передней поверхности хрусталика равна 10 мм, а при максимальной аккомодации, когда предмет всего приближен к глазу, радиус кривизны передней поверхности хрусталика — 5,3 мм.
Потеря эластичности сумки хрусталика с возрастом приводит к уменьшению его захламливающей способности при наибольшей аккомодации. Это увеличивает способность пожилых людей рассматривать предметы на далеком расстоянии. Ближайшая точка ясного видения с возрастом удаляется. Так, в 10-летнем возрасте она размещена на расстоянии менее 7 см от глаза, в 20 лет — 8,3 см, в 30 — 11 см, в 35 — 17 см, а в 60-70 лет приближается к 80-100 см .
С возрастом хрусталик становится менее эластичным. Способность к аккомодации начинает спадать уже с десяти лет, однако на зрении это сказывается только в преклонном возрасте (старческая дальнозоркость).
Острота зрения — это способность глаза отдельно воспринимать две точки, расположенные друг от друга на некотором расстоянии. Видение двух точек зависит от размеров изображения на сетчатке. Если они малы, то оба изображения сливаются и различить их невозможно. Размер изображения на сетчатке зависит от угла зрения: чем он меньше при восприятии двух изображений, тем больше острота зрения.
Для определения остроты зрения большое значение имеет освещение, окраска, размер зрачка, угол зрения, расстояние между предметами, места сетчатки, на которые падает изображение, и состояние адаптации. Острота зрения является простым показателем, характеризующим состояние зрительного анализатора у детей и подростков. Зная остроту зрения у детей, можно осуществлять индивидуальный подход к учащимся, размещение их в классе, рекомендовать соответствующий режим учебной работы, соответствует адекватному нагрузке на зрительный анализатор.
Проводящие пути зрительного анализатора (рис. 146). Свет, который попадает на сетчатку, проходит вначале через прозрачный светопреломляющий аппарат глаза: роговицу, водянистую влагу передней и задней камер, хрусталик и стекловидное тело. Пучок света на своем пути регулируется зрачком. Светопреломляющий аппарат направляет пучок света на более чувствительную часть сетчатки — место наилучшего видения — пятно с его центральной ямкой. Пройдя через все слои сетчатки, свет вызывает там сложные фотохимические преобразования зрительных пигментов. В результате этого в светочувствительных клетках (палочках и колбочках) возникает нервный импульс, который затем передается следующим нейронам сетчатки — биполярным клеткам (нейроцитам), а после них — нейроцитам ганглиозного слоя, ганглиозным нейроцитам. Отростки последних идут в сторону диска и формируют зрительный нерв. Пройдя в череп через канал зрительного нерва по нижней поверхности головного мозга, зрительный нерв образует неполный зрительный перекрест. От зрительного перекреста начинается зрительный тракт, который состоит из нервных волокон ганглиозных клеток сетчатки глазного яблока. Затем волокна по зрительному тракту идут к подкорковым зрительным центрам: латеральному коленчатому телу и верхним холмикам крыши среднего мозга. В латеральном коленчатом теле волокна третьего нейрона (ганглиозных нейроцитов) зрительного пути заканчиваются и вступают в контакт с клетками следующего нейрона. Аксоны этих нейроцитов проходят через внутреннюю капсулу и достигают клеток затылочной доли около шпорной борозды, где и заканчиваются (корковый конец зрительного анализатора). Часть аксонов ганглиозных клеток проходит через коленчатое тело и в составе ручки поступает в верхний холмик. Далее из серого слоя верхнего холмика импульсы идут в ядро глазодвигательного нерва и в дополнительное ядро, откуда происходит иннервация глазодвигательных мышц, мышц, которые суживают зрачки, и ресничной мышцы. Эти волокна несут импульс в ответ на световое раздражение и зрачки суживаются (зрачковый рефлекс), также происходит поворот в необходимом направлении глазных яблок.
Приспособление глаза к ясному видению на расстоянии удаленных предметов называют аккомодацией. Механизм аккомодации глаза связан с сокращением ресничных мышц, которые изменяют кривизну хрусталика.
При рассмотрении предметов на близком расстоянии одновременно с аккомодацией действует и конвергенция, т. е. происходит сведение осей обоих глаз. Зрительные линии сходятся тем больше, чем ближе находится рассматриваемый предмет.
Преломляющую силу оптической системы глаза выражают в диоптриях («Д» — дптр). За 1 Д принимается сила линзы, фокусное расстояние которой составляет 1 м. Преломляющая сила глаза человека составляет 59 дптр при рассмотрении далеких предметов и 70,5 дптр при рассмотрении близких.
Существуют три главные аномалии преломления лучей в глазу (рефракции): близорукость, или миопия; дальнозоркость, или гиперметропия; старческая дальнозоркость, или пресбиопия (рис. 147). Основная причина всех дефектов глаза состоит в том, что не согласуются между собой преломляющая сила и длина глазного яблока, как в нормальном глазу. При близорукости (миопии) лучи сходятся перед сетчаткой в стекловидном теле, а на сетчатке вместо точки возникает круг светорассеяния, глазное яблоко при этом имеет большую длину, чем в норме. Для коррекции зрения используют вогнутые линзы с отрицательными диоптриями.
При дальнозоркости (гиперметропии) глазное яблоко короткое, и поэтому параллельные лучи, идущие от далеких предметов, собираются сзади сетчатки, а на ней получается неясное, расплывчатое изображение предмета. Этот недостаток может быть компенсирован путем использования преломляющей силы выпуклых линз с положительными диоптриями.
Старческая дальнозоркость (пресбиопия) связана со слабой эластичностью хрусталика и ослаблением натяжения цинновых связок при нормальной длине глазного яблока.
Исправлять это нарушение рефракции можно с помощью двояковыпуклых линз. Зрение одним глазом дает нам представление о предмете лишь в одной плоскости. Только при зрении одновременно двумя глазами возможно восприятие глубины и правильное представление о взаимном расположении предметов. Способность к слиянию отдельных изображений, получаемых каждым глазом, в единое целое обеспечивает бинокулярное зрение.
Острота зрения характеризует пространственную разрешающую способность глаза и определяется тем наименьшим углом, при котором человек способен различать раздельно две точки. Чем меньше угол, тем лучше зрение. В норме этот угол равен 1 мин, или 1 единице.
Для определения остроты зрения используют специальные таблицы, на которых изображены буквы или фигурки различного размера.
32. Строение органа слуха и равновесия.
Орган слуха и равновесия, преддверно-улитковый орган (organum vestibulocochleare) у человека имеет сложное строение, воспринимает колебания звуковых волн и определяет ориентировку положения тела в пространстве.
Предверно-улитковый орган (рис. 148) делится на три части: наружное, среднее и внутреннее ухо. Эти части тесно связаны анатомически и функционально. Наружное и среднее ухо проводит звуковые колебания к внутреннему уху, и таким образом является звукопроводящим аппаратом. Внутреннее ухо, в котором различают костный и перепончатый лабиринты, образует орган слуха и равновесия.
Рис. 148. Преддверно-улитковый орган (орган слуха и равновесия):
1— верхний полукружный канал; 2— преддверие; 3 — улитка; 4— слуховой нерв; 5 — сонная артерия; 6 — слуховая труба; 7— барабанная полость; 8— барабанная перепонка; 9— наружный слуховой проход; 10— наружное слуховое отверстие; 11 — ушная раковина; 12— молоточек
Различают два вида передачи звуковых колебаний — воздушную и костную проводимость звука. При воздушной проводимости звука звуковые волны улавливаются ушной раковиной и передаются по наружному слуховому проходу на барабанную перепонку, а затем через систему слуховых косточек перилимфе и эндолимфе. Человек при воздушной проводимости способен воспринимать звуки от 16 до 20 000 Гц. Костная проводимость звука осуществляется через кости черепа, которые также обладают звукопроводимостью. Воздушная проводимость звука выражена лучше, чем костная.
Рецепторы вестибулярного аппарата раздражаются от наклона или движения головы. При этом происходят рефлекторные сокращения мышц, которые способствуют выпрямлению тела и сохранению соответствующей позы. При помощи рецепторов вестибулярного аппарата происходит восприятие положения головы в пространстве движения тела. Известно; что сенсорные клетки погружены в желеобразную массу, которая содержит отолиты, состоящие из мелких кристаллов карбоната кальция. При нормальном положении тела сила тяжести заставляет отолиты оказывать давление на определенные волосковые клетки. Если голова наклонена теменем вниз, отолит провисает на волосках; при боковом наклоне головы один отолит давит на волоски, а другой провисает. Изменение давления отолитов вызывает возбуждение волосковых сенсорных клеток, которые сигнализируют о положении головы в пространстве. Чувствительные клетки гребешков в ампулах полукружных каналов возбуждаются при движении и ускорении. Поскольку три полукружных канала расположены в трех плоскостях, то движение головы в любом направлении вызывает движение эндолимфы. Раздражения волосковых сенсорных клеток передаются чувствительным окончаниям преддверной части преддверно-улиткового нерва. Тела нейронов этого нерва находятся в преддверном узле, который лежит на дне внутреннего слухового прохода, а центральные отростки в составе преддверно-улиткового нерва идут в полость черепа, а затем в мозг к вестибулярным ядрам. Отростки клеток вестибулярных ядер (очередной нейрон) направляются к ядрам мозжечка и к спинному мозгу, образуют далее преддверно-спинномозговой путь. Они также входят в задний продольный пучок ствола головного мозга. Часть волокон преддверной части преддверно-улиткового нерва, минуя вестибулярные ядра, идут непосредственно в мозжечок.
При возбудимости вестибулярного аппарата возникают многочисленные рефлекторные реакции двигательного характера, которые изменяют деятельность внутренних органов, а также различные сенсорные реакции. Примером таких реакций может быть появление быстро повторяющихся движений глазных яблок (нистагма) после проведения вращательной пробы: человек делает глазами ритмичные движения в сторону, противоположную вращению, а затем очень быстро в сторону, которая совпадает с направлением вращения. Возможны также появление изменений в деятельности сердца, в суживании или расширении сосудов, снижение артериального давления, усиление перистальтики кишечника и желудка и др. При возбудимости вестибулярного аппарата появляется чувство головокружения, нарушается ориентировка в окружающей среде, возникает чувство тошноты. Вестибулярный аппарат участвует в регуляции и перераспределении мышечного тонуса