Механизмы передачи нервного импульса по нервному волокну
В клеточной мембране располагаются Na+, K+ –АТФазы, натриевые и калиевые каналы.
Na+, K+–АТФаза за счет энергии АТФ постоянно перекачивает Na+ наружу и К+ внутрь, создавая трансмембранный градиент концентраций этих ионов. Натриевый насос ингибируется уабаином.
Натриевые и калиевые каналы могут пропускать Na+ и К+ по градиентам их концентраций. Натриевые каналы блокируются новокаином, тетродотоксином, а калиевые - тетраэтиламмонием.
Работа Na+,K+–АТФазы, натриевых и калиевых каналов может создавать на мембране потенциал покоя и потенциал действия.
Потенциал покоя – это разность потенциалов между наружной и внутренней мембраной в условиях покоя, когда натриевые и калиевые каналы закрыты. Его величина составляет -70мВ, он создается в основном концентрацией K+ и зависит от Na+ и Cl-. Концентрация К+ внутри клетки составляет 150 ммоль/л, снаружи 4-5 ммоль/л. Концентрация Na+ внутри клетки составляет 14 ммоль/л, снаружи 140 ммоль/л. Отрицательный заряд внутри клетки создают анионы (глутамат, аспартат, фосфаты), для которых клеточная мембрана непроницаема. Потенциал покоя одинаков на всем протяжении волокна и не является специфической особенностью нервных клеток.
Раздражение нерва может приводит к возникновению потенциала действия.
Потенциал действия – это кратковременное изменение разности потенциала между наружной и внутренней мембраной в момент возбуждения. Потенциал действия зависит от концентрации Na+ и возникает по принципу «все или ничего».
Потенциал действия состоит из следующих стадий:
1. Локальный ответ. Если при действии стимула происходит изменение потенциала покоя до пороговой величины -50мВ, то открываются натриевые каналы, имеющие более высокую пропускную способность, чем калиевые.
2. Стадия деполяризации.Поток Na+ внутрь клетки приводит сначала к деполяризации мембраны до 0 мВ, а затем к инверсии полярности до +50мВ.
3. Стадия реполяризации. Натриевые каналы закрываются, а калиевые открываются. Выход К+ из клетки восстанавливает мембранный потенциал до уровня потенциала покоя.
Ионные каналы открываются на непродолжительное время и после их закрытия натриевый насос восстанавливает исходное распределение ионов по сторонам мембраны.
Нервный импульс
В отличие от потенциала покоя, потенциал действия охватывает лишь очень небольшой участок аксона (в миелинизированных волокнах – от одного перехвата Ранвье до соседнего). Возникнув в одном участке аксона, потенциал действия вследствие диффузии ионов из этого участка вдоль волокна снижает потенциал покоя в соседнем участке и вызывает здесь то же развитие потенциала действия. Благодаря этому механизму потенциал действия распространяется по нервным волокнам и называется нервным импульсом.
В миелинизированном нервном волокне натриевые и калиевые ионные каналы расположены в немиелинизированных участках перехватов Ранвье, где мембрана аксона контактирует с межклеточной жидкостью. Вследствие этого нервный импульс перемещается «скачками»: ионы Na+ , поступающие внутрь аксона при открытии каналов в одном перехвате, диффундируют вдоль аксона по градиенту потенциалов до следующего перехвата, снижают здесь потенциал до пороговых значений и тем самым индуцируют потенциал действия. Благодаря такому устройству скорость поведения импульса в миелинизированном волокне в 5-6 раз больше, чем в немиелинизированных волокнах, где ионные каналы расположены равномерно по всей длине волокна и потенциал действия перемещается не скачками, а плавно.
Синапс: виды, строение и функции
Вальдаер в 1891г. сформулировал нейронную теорию, согласно которой нервная система состоит из множества отдельных клеток – нейронов. В ней оставался неясным вопрос: каков механизм коммуникации между единичными нейронами? Ч. Шеррингтон в 1887г. для объяснения механизма взаимодействия нейронов ввел термин «синапс» и «синаптическая передача».
Синапс – это морфофункциональное образование нервной системы, которое обеспечивает передачу сигнала с одного нейрона на другой нейрон или на эффекторную клетку.
Классификация синапсов
1. По локализации: центральные (ЦНС) и периферические (нервно-мышечные, нейросекреторные синапсы вегетативной НС).
2. По развитию в онтогенезе: стабильные (безусловный рефлекс) и динамические (условный рефлекс) синапсы.
3. По конечному эффекту: тормозные и возбуждающие.
4. По механизму передачи сигнала: электрические, химические и смешанные.
Химические синапсы делят:
а). по форме контакта: терминальные (колбообразное соединение) и переходящие (варикозное расширение аксона).
б). по природе медиатора: холинергические (медиатор ацетилхолин), адренергические (норадреналин), дофаминергические (дофамин), ГАМК-ергические (ГАМК), глициергические (глицин), глутаматергические (глутамат), аспартатергические (аспартат), пептидергические (пептиды), пуринергические (АТФ).
Электрические синапсы осуществляют передачу сигнала путем прямого прохождения потенциалов действия. Электрические синапсы сравнительно редки, их роль в ЦНС пока неясна. Передача сигнала между нейронами идет через щелевые контакты (щель около 2нм) с ионными мостиками-каналами. В противоположность химическому синапсу, сигнал через электрический синапс передается быстро и сразу в два направления.
Химический синапс осуществляет передачу сигнала с помощью специальных молекул – нейромедиаторов.
Нейромедиатор- это соединение, которое синтезируется и запасается в нейроне, высвобождается при проведении нервного импульса и специфически связывается постсинаптической мембраной, где оно активирует или ингибирует постсинаптическую клетку посредством деполяризации и гиперполяризации.
Химический синапс состоит 1). из пресинаптического элемента, который ограничен пресинаптической мембраной. Пресинаптический элемент содержит митохондрии и особые пузырьки – синаптические везикулы, в которых хранится медиатор; 2). постсинаптического элемента, который ограничен постсинаптической мембраной. Постсинаптическая мембрана содержит рецепторы к медиатору; 3). внесинаптической области; 4). синаптической щели (толщина 50 нм), заполненной базальной мембраной.