Митохондрии: структура и функции

митохондрии: структура и функции - student2.ru

Рисунок 79 .Митохондрии: структура и функции

Структура митохондрий(рисунок 79.). Митохондрии - это органеллы размером с бактерию (около 1 х 2 мкм). Они найдены в большом количестве почти во всех эукариотических клетках. Обычно в клетке содержится около 2000 митохондрий, общий объем которых составляет до 25% от общего объема клетки.

Митохондрия ограничена двумя мембранами - гладкой внешней и складчатой внутренней, имеющей очень большую поверхность. Складки внутренней мембраны глубоко входят в матрикс митохондрий, образуя поперечный перегородки - кристы. Пространство между внешней и внутренней мембранами обычно называют межмембранным пространством. Различный типы клеток отличаются друг от друга как по количеству и форме митохондрий, так и по количеству крист. Особенно много крист имеют митохондрии в тканях с активными окислительными процессами, например в сердечной мышце. Вариации митохондрий по форме, что зависит от их функционального состояния, могут наблюдаться и в тканях одного типа. Митохондрии — изменчивые и пластичные органеллы. Мембраны митохондрий содержат интегральные мембранные белки. Во внешнюю мембрану входят порины, которые образуют поры и делают мембраны проницаемыми для веществ с молекулярной массой до 10 кДа.

Внутренняя же мембрана митохондрий непроницаема для большинства молекул; исключение составляют О2, СО2, Н20. Внутренняя мембрана митохондрий характеризуется необычно высоким содержанием белков (75%). В их число входят транспортные белки-переносчики, ферменты, компоненты дыхательной цепи и АТФ-синтаза. Кроме того, в ней содержится фосфолипид кардиолипин. Матрикс также обогащен белками, особенно ферментами цитратного цикла.

Метаболические функции. Митохондрии являются «силовой станцией» клетки, поскольку за счет окислительной деградации питательных веществ в них синтезируется большая часть необходимого клетке АТФ (АТР). Митохондрии являются главными потребителями кислорода в организме. Кислородная недостаточность (гипоксия) как результат недостаточного снабжения крови кислородом (ишемия) является причиной повреждения тканей вплоть до некроза. Первым признаком гипоксии является набухание митохондрий.


В митохондриях локализованы следующие метаболические процессы: превращение пирувата в ацетил-КоА, катализируемое пируватдегидрогеназным комплексом, цитратный цикл; дыхательная цепь, сопряженная с синтезом АТФ (сочетание этих процессов носит название «окислительное фосфорилирование»); расщепление жирных кислот путем β-окисления и частично цикл мочевины.

Митохондрии также поставляют клетке продукты промежуточного метаболизма и действуют наряду с ЭР как депо ионов кальция, которое с помощью ионных насосов поддерживает концентрацию Са2+ в цитоплазме на постоянном низком уровне (ниже 1 мкмоль/л).

Главной функцией митохондрий является захват богатых энергией субстратов (жирные кислоты, пируват, углеродный скелет аминокислот) из цитоплазмы и их окислительное расщепление с образованием СО2 и Н2О, сопряженное с синтезом АТФ.

Реакции цитратного цикла приводят к полному окислению углеродсодержащих соединений (СО2) и образованию восстановительных эквивалентов, главным образом в виде восстановленных коферментов. Большинство этих процессов протекают в матриксе.

Ферменты дыхательной цепи, которые реокисляют восстановленные коферменты, локализованы во внутренней мембране митохондрий. В качестве доноров электронов для восстановления кислорода и образования воды используются НАДН и связанный с ферментом ФАДН. Эта высоко экзергоническая реакция является многоступенчатой и сопряжена с переносом протонов (Н+) через внутреннюю мембрану из матрикса в межмембранное пространство. В результате на внутренней мембране создается электрохимический градиент. В митохондриях электрохимический градиент используется для синтеза АТФ из АДФ (ADP) и неорганического фосфата (Рi) при катализе АТФ-синтазой. Электрохимический градиент является также движущей силой ряда транспортных систем.

митохондрии: структура и функции - student2.ru

Рисунок 80. Транспортные системы митохондрий

Транспортные системы(рисунок 80) Внутренняя мембрана непроницаема для большинства низкомолекулярных соединений. Она удерживает не только продукты промежуточного метаболизма (например, пируват и ацетил-КоА), но и неорганические ионы (Н+ и Na+). Поэтому в цитплазме и митохондриях существуют независимые пулы ионов и метаболитов. Напротив, внешняя мембрана содержит порообразующие белки, которые делают ее проницаемой для низкомолекулярных соединений.

Обмен между цитоплазмой и матриксом обеспечивается специальными транспортными системами, локализованными во внутренней мембране митохондрий и способными переносить разнообразные вещества (пируват, фосфат, АТФ, АДФ, глутамат, аспартат, малат, 2-оксоглутарат, цитрат, жирные кислоты) по механизмам типа антипорт (обменная диффузия, А), симпорт (сопряженный транспорт, S) или унипорт (облегченная диффузия, U) (см. рис. 221). Имеется переносчик и для ионов Са2+, который наряду с ЭР регулирует концентрацию Са2+ в цитоплазме. Большая часть АТФ. продуцируемого митохондриями в матриксе, доставляется в цитоплазму с помощью АДФ/АТФ-транслоказы в обмен на АДФ (обменная диффузия). Фосфат поступает в митохондрии вместе с протонами независимо от транспорта АДФ/АТФ. Аналогичным образом при участии пируватспецифичного переносчика осуществляется одновременный перенос через внутреннюю мембрану пирувата и протонов.

Транспорт жирных кислот. В митохондриях за перенос жирных кислот отвечает специальная транспортная система. Активированные жирные кислоты в форме ацил-КоА становятся транспортабельными в цитоплазме после взаимодействия с карнитином. Образовавшийся ацилкарнитин транспортируется в матриксе карнитиновым переносчиком, обмениваясь на свободный карнитин. В матриксе ацильные остатки вновь связываются с КоА.

Малатный челнок. Для импорта восстановительных эквивалентов в форме НАДН+Н+ (кофермент-связанного водорода), образующихся в цитоплазме путем гликолиза, в митохондриях имеются несколько челночных систем. В митохондриях млекопитающих этот транспорт осуществляется в основном при помощи челночного механизма, использующего пару малат-оксалоацетат.

Основной функцией этого механизма является перенос восстановительных эквивалентов в составе малата. Малат, попадая в матрикс при посредстве переносчика, окисляется до оксалоацетата под действием малатдегидрогеназы. Оксалоацетат переносится обратно в цитоплазму лишь после трансаминирования в аспартат. Поскольку оксалоацетат может образовываться в избыточном количестве, в реакции трансаминирования и последующем транспорте принимает участие глутамат и 2-оксоглутарат. На схеме показано, что малатный челнок функционирует в обоих направлениях, обеспечивая перенос восстановительных эквивалентов от цитоплазматического НАДН в митохондрии без переноса НАД+.

Движущей силой транспортных процессов во внутренней мембране митохондрий служит концентрационный градиент метаболитов или электрохимический потенциал. Например, карнитиновая система транспорта жирных кислот работает за счет высоких концентраций ацил-КоА в цитоплазме. Движущей силой импорта фосфата и пирувата служит протонный градиент, в то время как обмен АТФ/АДФ и выброс ионов Са2+ зависят от трансмембранного потенциала внутренней мембраны митохондрий.

Приложение П

Наши рекомендации