Химическая организация генетического материала. Структура ДНК и РНК. Виды РНК. Уровни компактизации генетического материала и их роль в выполнении функций хромосом в клеточном цикле.
Молекула нуклеиновой кислоты представляет собой полимер (полинуклеотид), состоящий из последовательно соединенных друг с другом мономеров (нуклеотидов). В свою очередь, каждый нуклеотид представляет собой соединение, в котором присутствуют три различные молекулы:остаток фосфорной кислоты (фосфат), углевод (пентоза) и азотистое основание (пуриновое либо пиримидиновое).Следует отметить, что нуклеотиды молекул ДНК (дезоксирибонуклеотиды) содержат углевод дезоксирибозу и одно из четырех азотистых оснований — аденин (сокращенно обозначается символом (А), гуанин (Г), тимин (Т) и цитозин (Ц), первые два из которых являются производными пурина, а два последних — производными пиримидина. В состав нуклеотидов РНК (рибонуклеотидов) входит другая пентоза (рибоза) и также одно из четырех азотистых оснований — аденин, гуанин, урацил (У) и цитозин (вместо тимина здесь включается пиримидиновое основание урацил).
Виды РНК:
1) информационная РНК, которая кодирует наследственную информацию с ДНК и переносит ее к месту сборки белка;
2) транспортная РНК, которая присоединяет аминокислоты и переносит их к месту сборки белка;
3) рибосомальная РНК, котораявходит в состав рибосом.
Уровни компактизации генетического материала:
Существуют две наиболее известные модели, объясняющие механизм упаковки хроматина. Согласно одной из них, наиболее известной в зарубежной литературе, нить ДНК претерпевает пять уровней компактизацни от 2 нм (ее собственный диаметр) до 1400 нм (высококонденсированная метафазная хромосома).
1)Низшим уровнем иерархической организации хромосом считается нуклеосомный. Нуклеосома состоит из кора (сердцевины, стержня) и намотанной на него ДНК(146 п.н„ 1,8 витка). Кор представляет собой гистоновый октамер Н2А, Н2В, НЗ, Н4 (по две молекулы каждого). Хроматин на этой стадии имеет вид «бусин» (глобул диаметром 11 нм), нанизанных на «нить» (молекулярную ДНК). Такая структура обеспечивает компактизацию примерно в 6—7 раз.
2)Вторая ступень компактизации - формирование хроматиновой фибриллы диаметром 30 нм. В этом процессе участвует гистон HI, который связывается с ДНК между нуклеосомными корами и сворачивает нуклеосомную фибриллу в спираль, наполобие соленоида, с шагом в 6-8 нуклеосом. Уровень компактизации на этом этапе достигает примерно 40.
3)Третий этап — петельно-доменный — наиболее сложный. Соленоидная фибрилла складывается, образуя петли различной длины. Общий уровень компактизации возрастает до 1000, но, очевидно, может различаться в различных районах хромосомы. Диаметр такой структуры в среднем составляет 300 нм., по-видимому, она наиболее типична для интерфазной хромосомы.
4)На четвертом этапе компактизации 300 нм-фибриллы дополнительно сворачиваются, образуя хроматиды диаметром примерно 600-700 нм.
5)Пятая ступень компактизации (в 7000 раз) характерна для метафазной хромосомы; ее диаметр равен 1400 нм.
Известна и другая схема компактизации хроматина, предложенная Ю.С. Ченцовым. Она основана на данных световой и электронной микроскопии. Согласно этой модели первым уровнем также является нуклеосомный. На втором этапе 8-Ю нуклеосом образуют глобулу, называемую нуклеомером. Ряд сближенных нуклсомеров формируют 20-30-нанометровую фибриллу. Третий уровень - хромомерный. Петли фибрилл ДНП, скрепленные негистоновыми белками, образуют розетковидные структуры. На четвертом - хромонемном уровне происходит их сближение с образованием структур, состоящих из петлевых доменов. Предполагается, что на следующем, пятом, уровне компактизации, характерном для хроматид, происходит спиральная укладка хромонемных нитей.
Функции нуклеиновых кислот в процессе реализации наследственной информации. Кодирование наследственной информации в клетке. Генетический код и его свойства. Этапы реализации генетической информации: транскрипция и посттранскрипционные процессы, трансляция и посттрансляционные процессы.
Первично все многообразие жизни обусловливается разнообразием белковых молекул, выполняющих в клетках различные биологические функции. Структура белков определяется набором и порядком расположения аминокислот в их пептидных цепях. Именно эта последовательность аминокислот в пептидных цепях зашифрована в молекулах ДНК с помощью биологического (генетического) кода. Для шифровки 20 различных аминокислот достаточное количество сочетаний нуклеотидов может обеспечить лишь триплетный код, в котором каждая аминокислота шифруется тремя стоящими рядом нуклеотидами.Генетический код — это система записи информации о последовательности расположения аминокислот в белках с помощью последовательного расположения нуклеотидов в и-РНК.
Свойства ген. кода:
1) Код триплетен. Это означает, что каждая из 20 аминокислот зашифрована последовательностью 3 нуклеотидов, называется триплетом или кодоном.
2) Код вырожден. Это означает, что каждая аминокислота шифруется более чем одним кодоном (исключение метиотин и триптофан)
3) Код однозначен — каждый кодон шифрует только 1 аминоксилоту
4) Между генами имеются «знаки препинания» (УАА,УАГ,УГА) каждый из которых означает прекращение синтеза и стоит в конце каждого гена.
5) Внутри гена нет знаков препинания.
6) Код универсален. Генетический код един для всех живых на земле существ.
Транскрипция — это процесс считывания информации РНК, осуществляемой и-РНК полимеразой. ДНК — носитель всей генетической информации в клетке, непосредственного участия в синтезе белков не принимает. К рибосомам — местам сборки белков — высылается из ядра несущий информационный посредник, способный пройти поры ядерной мембраны. Им является и-РНК. По принципу комплементарности она считывает с ДНК при участии фермента называемого РНК — полимеразой. В процессе транскрипции можно выделить 4 стадии:
1) Связывание РНК-полимеразы с промотором,
2) Инициация — начало синтеза. Оно заключается в образовании первой фосфодиэфирной связи между АТФ и ГТФ и два нуклеотидом синтезирующей молекулы и-РНК,
3) Элонгация — рост цепи РНК, т.е. последовательное присоединение нуклеотидов друг к другу в том порядке, в котором стоят комплементарные нуклеотиды в транскрибируемой нити ДНК,
4) Терминация — завершения синтеза и-РНК. Промотр — площадка для РНК-полимеразы. Оперон — часть одного гена ДНК.
Транскри́пция (от лат. transcriptio — переписывание) — процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК.
Транскрипция катализируется ферментом ДНК-зависимой РНК-полимеразой. Процесс синтеза РНК протекает в направлении от 5'- к 3'- концу, то есть по матричной цепи ДНК РНК-полимераза движется в направлении 3'->5'
Транскрипция состоит из стадий инициации, элонгации и терминации.
Процессинг РНК (посттранскрипционные модификации РНК) — совокупность процессов в клетках эукариот, которые приводят к превращению первичного транскрипта РНК в зрелую РНК.
Наиболее известен процессинг матричных РНК, которые во время своего синтеза подвергаются модификациям: кэпированию, сплайсингу и полиаденилированию. Также модифицируются (другими механизмами) рибосомные РНК, транспортные РНК и малые ядерные РНК.
Трансляцией (от лат. translatio — перевод) называют осуществляемый рибосомой синтез белка из аминокислот на матрице информационной (или матричной) РНК (иРНК или мРНК).
Процесс трансляции разделяют на
1) инициацию — узнавание рибосомой стартового кодона и начало синтеза.
2) элонгацию — собственно синтез белка.
3)терминацию — узнавание терминирующего кодона (стоп-кодона) и отделение продукта.