Средства, действующие на центральную нервную систему

Лекарственные средства, действующие на ЦНС, были известны с древних вре­мен. Препаратам опия, мандрагоры, белладонны в Древнем Египте, средневеко­вой Европе приписывались магические свойства; алкоголь использовался для снижения болевой чувствительности. Вместе с тем, арсенал средств, влияющих на функции ЦНС, был весьма незначительным в течение многих веков. Большин­ство заболеваний головного и спинного мозга оставались неизлечимыми. Лишь в XX веке были достигнуты значительные успехи в этой области. Во многом разви­тие фармакологии ЦНС было обусловлено достижениями физиологии и биохимии.

В ЦНС нейроны связаны между собой посредством синапсов, т.е. специаль­ных контактов между отростками одних нейронов и телами или отростками дру­гих нейронов. Передачу возбуждения в синапсах от одного нейрона к другому осуществляют медиаторы (нейромедиаторы), которые выделяются из пресинап-тических окончаний под воздействием нервного импульса. Нейромедиаторы дей­ствуют на специфические рецепторы, расположенные на постсинаптической мем­бране и связанные с ионными каналами, ферментами. При этом изменяется функциональная активность нейронов. Нейромедиаторы могут действовать на ре­цепторы, расположенные на пресинаптической мембране, таким образом регу­лируется выделение нейромедиатора в синаптическую щель.

К числу нейромедиаторов, участвующих в синаптической передаче в ЦНС, относятся моноамины, ацетилхолин, аминокислоты, пептиды.

Моноамины

К моноаминам относятся катехоламины (дофамин, норадреналин) и серотонин.

Дофамин

Основные дофаминергические структуры головного мозга расположены в чер­ном веществе, неостриатуме, лимбической системе, гипоталамусе. Патологичес­кие изменения дофаминергических структур мозга играют роль в возникновении таких заболеваний, как паркинсонизм, шизофрения. В настоящее время выделе­но несколько подтипов дофаминовых рецепторов, которые объединены в 2 клас­са: D, (подтипы D, и D5) и D2 (подтипы D2, D3h D4). Между этими классами ре­цепторов существуют определенные функциональные различия, обусловленные тем, что дофаминовые рецепторы класса D, связаны с 0,-белками (активируют аденилатциклазу, в результате в клетках повышается уровень цАМФ), а рецепто­ры класса D2 — с G.-белками (ингибируют аденилатциклазу и снижают уровень цАМФ, а также активируют калиевые каналы).

Норадреналин

Значительная часть норадренергических нейронов расположена в голубом пят­не (locus coeruleus) серого вещества моста, откуда аксоны нейронов проецируют­ся в кору головного мозга, гиппокамп, гипоталамус, мозжечок, продолговатый и спинной мозг. В норадренергических синапсах ЦНС имеются как а-, так и р-ад-ренорецепторы.

Серотонин (5-гидрокситриптамин, 5-НТ)

Серотонинергические пути начинаются из ядер шва, моста и ствола головного мозга. Волокна, входящие в эти пути, распределяются в головном мозге, контроли-

руя многие функции ЦНС - участвуют в регуляции аппетита, цикла сон — бодр­ствование, активности нейронов антиноцицептивной системы, рвотного центра, лимбической системы. Выделяют значительное число подтипов серотониновых рецепторов, сгруппированных в подразделения 5-НТ F, 5-НТ си т.д. При стиму­ляции различных подтипов серотониновых рецепторов возникают как тормозные эффекты (5-НТ 5-НТш), так и эффекты возбуждения (5-НТ 5-НТ2 5-НТ3и 5-НТ4). Среди этих рецепторов только 5-НТ3-рецепторы являются ионотропными (непос­редственно связаны с ионными каналами), остальные подтипы серотониновых рецепторов взаимодействуют с ионными каналами и ферментами через G-белки.

Ацетилхолин

Холинергические нейроны локализованы в большинстве областей ЦНС. Хо-линергическая передача имеет важное функциональное значение в неостриатуме и коре головного мозга. Посредством холинергической передачи осуществляется регуляция как психических, так и моторных функций; установлена ее роль в про­цессах обучения, запоминания. Н-холинорецепторы, сходные с Н-холинорецеп-торами вегетативных ганглиев, расположены на тормозных клетках Реншоу в спинном мозге, а М-холинорецепторы находятся в синапсах различных отделов головного мозга (в коре головного мозга, неостриатуме).

Аминокислоты

Тормозные аминокислоты

Гамма-аминомасляная кислота (ГАМК) относится к монокарбоно-вым аминокислотам; является основным тормозным медиатором в ЦНС. Среди ГАМК-рецепторов выделяют 2 основных подтипа: ГАМКА- и ГАМКв-рецепторы. ГАМКА-рецептор связан с мембранным каналом для С1~, который открывается при возбуждении рецептора под действием ГАМК. Ионы хлора поступают через канал внутрь клетки, что вызывает гиперполяризацию мембраны, т.е. тормозной эффект. В настоящее время имеются данные о гетерогенности ГАМКА-рецепто-ров, что объясняет различия в эффектах веществ угнетающего типа.

ГАМКв-рецепторы связаны с G-белками, стимулирующими аденилатциклазу, и посредством этого механизма регулируют биохимические процессы в клетке и воздействуют на ионные каналы. При стимуляции ГАМКВ-рецепторов в клетке повышается уровень цАМФ и уменьшается проникновение в клетку ионов Са2+, что приводит к развитию тормозных эффектов.

Глицин, как и ГАМК, является монокарбоновой аминокислотой и, воздей­ствуя на глициновые рецепторы, оказывает аналогичное тормозное влияние на нейроны (повышается проницаемость хлорных каналов, ионы С1~ поступают в клетку, возникает гиперполяризация мембраны). Наибольшая концентрация этого медиатора отмечена в сером веществе спинного мозга.

Возбуждающие аминокислоты

L-Глутамат относится к дикарбоновым аминокислотам, присутствует во всех отделах головного и спинного мозга. Обладает выраженным активирующим действием на нейроны, является возбуждающим медиатором в ЦНС. Глутамат-ные рецепторы подразделяются на «метаботропные», связанные с G-белками, и «ионотропные», непосредственно связанные с ионными каналами. Ионотропные глутаматные рецепторы связаны с натриевыми каналами, которые открываются

при стимуляции рецепторов - в результате ионы Na+ поступают в клетку, что вы­зывает деполяризацию мембраны и возбуждающий эффект. Связанные с канала­ми рецепторы по чувствительности к химическим анализаторам подразделяются на АМРА-рецепторы (чувствительны к амино-3-окси-5-метил-4-изоксазолпро-пионовой кислоте), каинатные рецепторы (чувствительны к каиновой кислоте, выделенной из морских водорослей) и NMDA-рецепторы (чувствительны к N-метил-Б-аспартату). Стимуляция АМРА- и каинатных рецепторов вызывает бы­струю деполяризацию в большинстве глутаматергических синапсов в головном и спинном мозге. NMDA-рецепторы также вовлечены в синаптическую передачу, однако они в большей степени определяют пластичность синаптической переда­чи, что имеет важное значение для процессов обучения и памяти. Эксперимен­тально было установлено, что блокада этих рецепторов предупреждает дегенера­цию нейронов головного мозга при ишемии. Другая эндогенная возбуждающая аминокислота - L-аспартат действует аналогично глутамату.

Пептиды

Роль пептидов в регуляции активности ЦНС установлена сравнительно недав­но, поэтому уверенно говорить о пептидергической передаче можно лишь в от­ношении некоторых соединений. Так, энкефалины и эндорфины являются аго-нистами опиоидных рецепторов мозга. Субстанция Р участвует в передаче болевых (ноцицептивных) импульсов в спинном мозге. Многие физиологически актив­ные пептиды (холецистокинин, пептид дельта-сна, VIP, нейропептид Y) имеют места связывания в ЦНС, но полностью их роль как нейромедиаторов пока не доказана. Предполагается, что эти вещества могут оказывать на синаптическую передачу регулирующее (нейромодуляторное) действие.

Известны и другие вещества, которые наряду с нейромедиаторной функцией (передачей возбуждения в синапсах) оказывают на синаптическую передачу в ЦНС регулирующее действие, т.е. выполняют роль нейромодуляторов. К таким веще­ствам могут быть отнесены аденозин, АТФ, оксид азота, гистамин. В регуляции ряда функций ЦНС принимают участие простагландины.

Анализ нейромедиаторных систем головного мозга позволил найти возмож­ные «мишени» действия для лекарственных веществ.

Большинство лекарственных веществ, влияющих на ЦНС, воздействуют на синаптическую передачу в головном или спинном мозге. Вещества могут действо­вать на различных этапах синаптической передачи как на пресинаптическом, так и на постсинаптическом уровне. Лекарственные вещества могут воздействовать на синтез медиатора (леводопа), выделение медиатора в синаптическую щель (ам­фетамин). Эффекты многих лекарственных веществ связаны со стимуляцией со­ответствующих рецепторов (опиоидные анальгетики, бензодиазепины) или с бло­кадой рецепторов (антипсихотические средства). Используются вещества. которые ингибируют обратный нейрональный захват медиатора (трицикличёс-кие антидепрессанты), нарушают процесс депонирования медиатора в везикула? (резерпин) и процесс метаболической инактивации медиатора в цитоплазме не­рвной клетки (ингибиторы МАО).

Кроме того, некоторые лекарственные вещества оказывают влияние на ЦНС, непосредственно взаимодействуя с ионными каналами (противоэпилептические средства из группы блокаторов натриевых, кальциевых каналов) или фермента­ми (парацетамол - ингибитор циклооксигеназы).

Известны вещества, которые оказывают нормализующее действие на энерге­тический обмен в нервных клетках (ноотропные средства).

Лекарственные вещества, действующие на ЦНС, подразделяются на следую­щие группы:

- средства для наркоза;

- снотворные средства;

- противоэпилептические средства;

- противопаркинсонические средства;

- болеутоляющие средства (анальгетики);

- аналептики;

- психотропные средства: нейролептики, антидепрессанты, соли лития, анк-сиолитики, седативные средства, психостимуляторы, ноотропные средства.

Средства для наркоза, снотворные наркотического типа действия оказывают неизбирательное (общее) угнетающее действие на ЦНС.

Противоэпилептические и противопаркинсонические средства, анальгети­ки, нейролептики, анксиолитики оказывают относительно избирательные угне­тающие эффекты на определенные структуры и функции ЦНС.

Аналептики стимулируют жизненно важные центры - дыхательный и сосу-додвигательный. Психостимуляторы активируют высшую нервную деятельность.

Глава 10

Наши рекомендации