Экзокринный отдел построен из железистых концевых отделов - ацинусов и выводковых протоков.

Эндокринная часть поджелудочной железы состоит из небольших скоплений клеток, известных как островки Лангерганса (рис. 6). Они отделены от ацинусов эндокринной части железы прослойками соединительной ткани. Эти островки окружены и пронизаны богатой капиллярной сетью, которая доставляет кровь от островков к ацинарным клеткам.

3. Аллергия - определение, виды аллергических реакций и их характеристика.

Аллергия — повышенная чувствительность организма к воздействию некоторых факторов окружающей среды (химических веществ, микроорганизмов и продуктов их жизнедеятельности, пищевых продуктов и др.), называемых аллергенами. Приводит к развитиюаллергических болезней, среди которых особенно часто встречаются бронхиальная астма, поллинозы, крапивница, контактные дерматиты.

Гиперчувствительность немедленного типа (ГЧНТ). Аллергические реакции немедленного типа протекают с участием образовавшихся в ответ на антигенную нагрузку антител в циркулирующих гуморальных средах. Повторное попадание антигена приводит к его быстрому взаимодействию с циркулирующими антителами, образованию комплексов антиген-антитело.

Билет № 13.

1. Скелетная мускулатура человека, её функции. Классификация и строение скелетных мышц. Физиология мышечного сокращения.

Мышцы – одна из основных составляющих тела. Они основаны на ткани, волокна которой сокращаются под воздействием нервных импульсов, что позволяет телу двигаться и удерживаться в окружающей среде. Мышцы располагаются в каждой части нашего тела. И даже если мы не знаем об их существовании, они все равно есть. Достаточно, например, первый раз сходить в тренажерный зал или позаниматься аэробикой – на следующий день у вас начнут болеть даже те мышцы, о наличии которых вы и не догадывались. -

Они отвечают не только за движение. В состоянии покоя мышцы тоже требуют энергии, чтобы поддерживать себя в тонусе. Это необходимо для того, чтобы в любой момент определенная часть тела смогла ответить на нервный импульс соответствующим движением, а не тратила время на подготовку. -

Общие понятия По своему наполнению и происходящим реакциям мышечные волокна делятся на: поперечно-полосатые; гладкие. Скелетные мышцы – продолговатые трубчатые структуры, количество ядер в одной клетке которых может доходить до нескольких сотен. Состоят они из мышечной ткани, которая прикреплена к различным частям костного скелета. Сокращения поперечно-полосатых мышц способствуют движениям человека. Разновидности форм Чем различаются мышцы? Фото, представленные в нашей статье, помогут нам в этом разобраться. Скелетные мышцы являются одной из главных составляющих опорно-двигательной системы. Они позволяют двигаться и сохранять равновесие, а также задействованы в процессе дыхания, голосообразования и других функциях. -

Мышцы головы и шеи: мимические – задействуются при улыбке, общении и создании различных гримас, обеспечивая при этом движение составляющих частей лица; жевательные – способствуют смене положения челюстно-лицевого отдела; произвольные мышцы внутренних органов головы (мягкого неба, языка, глаз, среднего уха). Группы скелетных мышц шейного отдела: поверхностные – способствуют наклонным и вращательным движениям головы; средние – создают нижнюю стенку ротовой полости и способствуют движению вниз челюсти, подъязычной кости и гортанных хрящей; глубокие осуществляют наклоны и повороты головы, создают поднятие первого и второго ребер.

Строение скелетной мышцы В своей структуре она имеет огромное количество мышечных волокон продолговатой формы диаметром от 10 до 100 мкм, длина их колеблется от 1 до 12 см. Волокна (микрофибриллы) бывают тонкими – актиновые, и толстыми – миозиновые. Первые состоят из белка, имеющего фибриллярную структуру. Он называется актин. Толстые волокна состоят из различных типов миозина. Отличаются они по времени, которое требуется на разложение молекулы АТФ, что обуславливает разную скорость сокращений. Миозин в гладких мышечных клетках находится в дисперсном состоянии, хотя имеется большое количество белка, который, в свою очередь, является многозначащим в продолжительном тоническом сокращении. -

Функции скелетных мышц Эта мускулатура является основой опорно-двигательного аппарата. Если она сильна, тело проще поддерживать в нужном положении, а вероятность появления сутулости или сколиоза сводится к минимуму. О плюсах занятий спортом знают все, поэтому рассмотрим роль, которую играет в этом мускулатура. Сократительная ткань скелетных мышц выполняет в организме человека множество различных функций, которые нужны для правильного расположения тела и взаимодействия его отдельных частей друг с другом. Мышцы выполняют следующие функции: создают подвижность тела; берегут тепловую энергию, созданную внутри тела; способствуют перемещению и вертикальному удержанию в пространстве; содействуют сокращению дыхательных путей и помогают при глотании; формируют мимику; способствуют выработке тепла.

2. Конечный мозг человека: полушария, мозолистое тело, полосатое тело и обонятельный мозг. Кора полушарий - доли, борозды, извилины, их функции.

Конечный мозг. Состоит из двух полушарий большого мозга, разделенных продольной щелью и соединенных в ней с помощью мозолистого тела, передней и задней спаек, а также спайки свода. Полость конечного мозга образует правый и левый боковые желудочки, каждый из них находится в своем полушарии. Полушарие большого мозга состоит из коры большого мозга (плащ) и нижележащего белого вещества и расположенного в нем серого вещества — базальных ядер. Граница между конечным и промежуточным мозгом находится в том месте, где внутренняя капсула прилегает к латеральной стороне таламуса.

Полушария большого мозга покрыты снаружи тонкой пластинкой серого вещества — корой большого мозга.

Площадь поверхности коры полушарий у взрослого человека в среднем составляет 220 тыс. мм , причем на выпуклые части извилин приходится 1/3, а на боковые и нижние стенки борозд — 2/3 всей площади коры. Кора содержит около 14 млрд нейронов. В коре выделяют шесть слоев нервных клеток: 1) молекулярную пластинку; 2) наружную зернистую пластинку; 3) наружную пирамидную пластинку; 4) внутреннюю зернистую пластинку; 5) внутреннюю пирамидную пластинку; 6) мультиформную пластинку. В каждом слое, кроме клеток, располагаются их отростки — волокна. Толщина коры в разных участках неодинакова и колеблется от 1,5 до 5,0 мм.

Каждое из полушарий имеет три поверхности: наиболее выпуклую — верхнелатеральную, медиальную и нижнюю. Наиболее выступающие участки полушарий получили название полюсов: лобный полюс, затылочный полюс, височный полюс. Рельеф поверхностей полушарий очень сложный в связи с наличием глубоких щелей, борозд и расположенных между ними валикообразных возвышений — извилин (рис. 112). Глубина, продолжительность борозд, их форма и направление очень изменчивы. Щели, борозды делят полушария на лобную, теменную, затылочную, височную и островковую доли. Последняя находится на дне латеральной борозды и прикрыта участками других долей.

На верхнелатеральной поверхности полушария находится латеральная (сильвиева) борозда, которая служит границей между лобной, теменной и височной долями. Центральная (роландова) борозда отделяет лобную долю от теменной.

Лобная доля расположена в переднем отделе каждого полушария большого мозга. На ней находится предцент ральная борозда, которая дает начало двум параллельным бороздам, идущим к лобному полюсу. На поверхности доли расположены также предцентральная, верхняя, средняя и нижняя извилины.

3. Гипертрофия и гиперплазия - определение, виды, механизмы, исходы.

Гипертрофией и гиперплазией называются компенсаторно-приспособительные процессы, причинно обусловленные повышенным функциональным стимулом, проявляющиеся увеличением количества и величины структурных элементов и усилением их функции. Структурно-функциональные изменения при гипертрофии и гиперплазии связаны с повышением интенсивности обмена веществ.

Гипертрофия— увеличение объема и массы органа, ткани, клеток; гиперплазия — увеличение количества структурных элементов органа, тканей и клеток в результате их размножения. В основе этих процессов лежат усиленное питание и повышенная функция нормально развитого органа. Если увеличивается специализированная ткань органа, то развивается истинная гипертрофия или гиперплазия. Увеличение органа за счет соединительной, жировой ткани или объема полости определяется как ложная гипертрофия. Врожденное увеличение органа, связанное с развитием порока (гигантизм организма, органа или ткани), как возрастной рост и развитие, к гипертрофии не относят. При гипертрофии клеток происходит гиперплазия внутриклеточных органелл (ядрышек, ядер, митохондрий, рибосом, цитоплазматической сети, пластинчатого комплекса, лизосом и др.), а при гиперплазии клеток, тканей и органов отмечают отдельные гипертрофированные структурные элементы (например, полиплоидные и многоядерные клетки).

Физиологическая гипертрофия возникаетв результате усиления функции органов под влиянием естественных причин в физиологических условиях; Объем и масса органов увеличиваются в здоровом организме при усиленной его работе. Например, гипертрофия сердца и скелетных мышц при напряженной физической работе (лошади, ослы, волы) и у спортивных животных; гипертрофия молочной железы (до 70 кг и более) высокопродуктивных молочных коров в результате раздоя, увеличиваются и другие органы. Физиологическая гипертрофия матки и молочных желез наблюдается при беременности и лактации. Физиологическая гиперплазия лимфоид-ной ткани бывает в результате антигенной стимуляции организма нормальной микрофлорой.

Для физиологической гипертрофии характерны усиление деятельности генетически обусловленных механизмов нервно-гормональной регуляции, повышение интенсивности дыхания, питания и обмена веществ, морфофункциональные изменения соответствующих органов и тканей.

Патологическаягипертрофиявозникаетв результате усиления работы органа или ткани под воздействием чрезмерных нагрузок в патологических условиях. Для развития патологической гипертрофии характерно становление нового уровня нервно-гормональной регуляции и обменных процессов в больном организме. В зависимости от причин и механизма развития выделяют рабочую (компенсаторную), викарную (заместительную), гормональную, ва-катную гипертрофии и гипертрофическое разрастание.

Рабочая (компенсаторная) гипертрофияразвивается в результате усиленной работы органа при болезнях и травмах. Возникающие в тканях дефекты создают для сохранившихся структур органа повышенную функциональную нагрузку, определяющую возникновение и развитие гипертрофии и гиперплазии. Как компенсаторное явление наблюдают гипертрофию сердечной мышцы при врожденных и приобретенных пороках (например, гипертрофия левой половины сердца при недостаточности или стенозе двустворчатого клапана, полулунных клапанов аорты), гипертрофию правого сердца при затруднениях в малом круге кровообращения (при недостаточности или стенозе трехстворчатого клапана, полулунных клапанов легочной артерии, при хронической пневмонии, эмфиземе и других пневмола-тиях); гипертрофию печени и почек при повышенном белковом кормлении; гипертрофию мочевого пузыря при простатите и сужении мочеиспускательного канала; гипертрофические процессы в желудочно-кишечном тракте и др.

При патологической гипертрофии полноценная морфологическая компенсация нарушенной функции органов и тканей может обеспечивать усиленную работу органа в течение длительного периода, иногда много лет. Продолжительность фазы компенсации, возможность возврата к норме зависят от состояния гипертрофированного или гиперплазированного органа, крово-и лимфообращения в нем, питания и обмена веществ, уровня нервной и гормональной регуляции, степени устранения причины, вызвавшей гипертрофию (гиперплазию) органа.Если причина, вызвавшая гипертрофию, действует, то нервно-гормональная регуляция гипертрофированного органа ослабевает и истощается, в нем нарастают дистрофические, ат-рофические и склеротические изменения, наступает декомпенсация. Например, порок сердца становится декомпенсированным за счет поперечного, пассивного, или миогенного, расширения полости сердца, его морфофункциональной недостаточности.

Патологические гипертрофические разрастания в органах и тканях, вызванные длительным раздражающим действием на них патогенных факторов, еще более ослабляют и нарушают работу поврежденных органов.

Билет № 14.

1. Клетки человеческого организма – их количественные и качественные изменения в процессе онтогенеза. Основные компоненты клеток: цитолемма, цитоплазма и ядро, их функции.

Клетка – это элементарная структурная, функциональная и генетическая единица всего живого.

Рост – это необратимое увеличение размеров и массы клетки, органа или всего организма, связанное с новообразованием элементов их структур. Это понятие отражает количественные изменения, происходящие в процессе развития организма или его частей.

А развитие – это качественные изменения в структуре и функциональной активности растений и его частей в процессе онтогенеза.

Онтогенез – это процесс индивидуального развития организма от зиготы (или вегетативного зачатка) до естественной смерти.

Рост и развитие отражают наследственные особенности и всю совокупность процессов взаимодействия растительного организма с факторами внешней среды. Рост и развитие всегда связаны между собой, обусловливают друг друга.

В процессе индивидуального развития, т.е. онтогенеза, реализуется наследственная информация, называемая генотипом. Естественно, что на этот процесс влияют конкретные условия окружающей среды, в результате чего формируетсяфенотип – результат реализации генотипа в определенных условиях среды.

Выделяют 4 фазы: эмбриональную, растяжения, дифференцировки, старение и смерть дифференцированных клеток.

1. Эмбриональная фаза проходит в меристемах (образовательных тканях). Делится на 2 периода: период между делениями клетки и собственно деление клетки. Структура клетки в период между делениями (другими словами, интерфаза) имеет ряд особенностей: густая цитоплазма с хорошо развитой ЭПС, мелкие вакуоли, много рибосом, митохондрий тоже много, но они еще не совсем развиты (мало крист, матрикс густой). Ядро небольшого размера с крупным ядрышком. В интерфазе очень активно идет процесс синтеза белков, что в свою очередь требует затраты энергии, соответственно, высока интенсивность дыхания. В интерфазе же происходит и редупликация ДНК.

Перед делением клетки происходят заметные изменения в энергетическом состоянии, наступает как бы энергетическая разрядка. Интенсивность обменных процессов падает, синтез белка практически прекращается.

Деление начинается с деления ядра, проходит все стадии, формируются плазмолемма, срединная пластинка, клеточная стенка. Все обменные процессы активируются. Дочерняя клетка растет до размеров материнской и вновь делится. Так не более 3-5 раз.

Эмбриональная фаза онтогенеза клетки контролируется гормонами. Для пред- и постсинтетических фаз необходим ауксин, активизирующий транскрипцию и трансляцию, а также высокую интенсивность дыхания. Цитокинин требуется для митоза и цитокинеза.

Затем эмбриональные клетки переходят в следующую фазу роста – растяжения.

2. Фаза растяжения. В этой фазе происходит следующее: цитоплазма становится менее вязкой, более обводненной. Каналы ЭПС расширяются, местами переходят в цистерны. Развиваются кристы у митохондрий. Ядра принимают неправильную форму с тем, чтобы увеличить поверхность соприкосновения с цитоплазмой. Мелкие вакуоли сливаются и образуется центральная вакуоль. Скорость синтеза белка увеличивается. Возрастает, причем очень существенно, объем клетки. Основная причина – усиленное поступление воды.

3. Фаза дифференциации.Дифференциация – это возникновение структурных и функциональных различий между клетками, приводящее к многообразию клеток. Природа клетки и соответственно выполняемые ею функции будут зависеть от того, какой комплекс генов в ней будет активен, причем большинство эмбриональных клеток усложняют свою структуру, другие – упрощают. Примером последних является образование члеников ситовидной трубки: исчезают клеточные ядра, тонопласт. В клетках-спутницах флоэмы формируется большое количество митохондрий, а в эпидермальных клетках листа – минимальное.

4. Старение и смерть клетки - это завершающие этапы онтогенеза дифференцированных клеток.

Этот этап связан с ослаблением биосинтетических процессов и активацией гидролитических процессов.

Видимые признаки старения клеток:

1. закисление цитоплазмы, происходящее в результате ингибирования Н-помпы абсцизовой кислотой (изменения конформации белков);

2. снижение полупроницаемости мембран из-за окисления липидов мембран активно образующимися пероксидами (из-за сдвига рН в кислую сторону).

2. Спинной мозг человека, его функции. Расположение - оболочки, ликвор. Строение спинного мозга. Рефлекторные дуги и рефлексы, их виды.

Спинной мозг – это часть центральной нервной системы. Он располагается в позвоночном канале. Представляет собой толстостенную трубку с узким каналом внутри, несколько сплюснутую в передне-заднем направлении. Имеет довольно сложное строение и обеспечивает передачу нервных импульсов от головного мозга к периферическим структурам нервной системы, а также осуществляет собственную рефлекторную деятельность. Без функционирования спинного мозга невозможны нормальное дыхание, сердцебиение, пищеварение, мочеиспускание, сексуальная деятельность, любые движения в конечностях. Из этой статьи Вы сможете узнать о строении спинного мозга и особенностях его функционирования и физиологии.

Размеры спинного мозга человека следующие: длина приблизительно 40-45 см, толщина – 1-1,5 см, вес – около 30-35 г.

По длине выделяют несколько отделов спинного мозга:

• шейный;

• грудной;

• поясничный;

• крестцовый;

• копчиковый.

В области шейного и пояснично-крестцового уровней спинной мозг толще, чем в других отделах, потому что в этих местах располагаются скопления нервных клеток, обеспечивающих движения рук и ног.

Последние крестцовые сегменты вместе с копчиковым называются конусом спинного мозга из-за соответствующей геометрической формы. Конус переходит в терминальную (конечную) нить. Нить уже не имеет нервных элементов в своем составе, а только лишь соединительную ткань, и покрыта оболочками спинного мозга. Терминальная нить фиксируется ко II копчиковому позвонку.

3. Воспаление-определение, обозначение, виды, причины, патогенез, симптомы, течения и исходы.

Воспаление — это биологический общепатологический процесс, целесообразность которого определяется его защитно-приспособительной функцией, направленной на ликвидацию повреждающего агента и восстановление поврежденной ткани

Особенности воспаления зависят не только от иммунной, но и от реактивности организма.У детей недостаточно выражена способность к отграничению воспалительного очага и репарации поврежденной ткани. Этим объясняется склонность к генерализации воспалительного и инфекционного процессов в этом возрасте. В старости возникает сходная воспалительная реакция.

При любом виде воспаления в очаг первыми приходят полиморфноядерные лейкоциты (ПЯЛ). Их функция направлена на локализацию и уничтожение патогенного фактора.

В воспалительной реакции взаимодействуют лимфоидные и нелимфоидные клетки, различные биологически активные вещества, возникают множественные межклеточные и клеточно-матриксные взаимоотношения.

Эта реакция проявляется: 1) повышением температуры тела выше 38°С, 2) частотой сердечных сокращений более 90 уд./мин, 3) частотой дыхания более 20 в мин, 4) лейкоцитозом периферической крови более 12000 мкл или лейкопенией менее 4000 мкл, возможно также появление более 10% незрелых форм лейкоцитов. Для диагноза SIRSнеобходимо наличие не менее двух из этих признаков.

Наши рекомендации