Особенности генетики вирусов
Модификации.Ненаследуемые изменения у многих вирусов происходят в результате включения в состав их внешней оболочки липидов и углеводов клеток хозяина, в которых вирус репродуцируется.
Мутации.Спонтанные мутации возникают в результате ошибок при репликации генома вируса. Индуцированные мутации происходят под действием мутагенов. Одни из них (азотистая кислота) влияют на внеклеточный вирион, другие (акридин, аналоги азотистых оснований) - на процесс репликации вирусной нуклеиновой кислоты в клетке. Мутанты отличаются от исходных вирусов по строению и величине бляшек, которые они образуют в культуре клеток, по антигенам, по чувствительности к температуре.
Рекомбинации.При одновременном паразитировании двух вирусов в одной клетке хозяина возможен обмен генетическим материалом между ними. В результате генетической рекомбинации происходит обмен участками HK между разными вирусами, и образуются рекомбинанты, обладающие генами двух исходных вирусов. Вирус гриппа имеет геном, состоящий из восьми фрагментов РНК. При одновременной репродукции в одной клетке двух разных вирусов гриппа между ними может происходить обмен генами. Образовавшинеся рекомби-нанты будут представлять собой новый тип вируса гриппа.
При одновременном паразитировании двух видов вируса в одной клетке в момент формирования зрелых вирионов возможно фенотипическое смешивание, когда геном одного вируса одевается капсидом другого вируса (феномен транскапсидации). Так, например, известны случаи, когда геном вируса иммунодефицита человека (ВИЧ) оказывается включенным в белковый капсид другого вируса. В результате такой вирус приобретает способность поражать такие виды клеток, которые были нечувствительны к исходному вирусу.
Практическое значение учения о генетике микробов
При микробиологической диагностике инфекционных заболеваний возникают затруднения в определении вида атипичных микробов, например, бактерий дизентерии, не агглютинирующихся сыворотками. Для их идентификации приходится применять другие методы.
В процессе лечения больных инфекционными болезнями создаются препятствия в виде устойчивости возбудителей к антибиотикам, и требуются специальные методы для преодоления лекарственной устойчивости. Селекция в условиях стационаров штаммов микроорганизмов, обладающих множественной лекарственной устойчивостью и высокой вирулентностью для человека, привело к формированию так называемых «госпитальных» штаммов, вызывающих внутрибольничныс инфекции. Такие штаммы известны среди стафилококков, а также среди сальмонелл и других грамотрицательных палочек.
Методами направленной мутации и селекции получены живые вакцины, с успехом применяющиеся для профилактики инфекционных болезней.
Достижения молекулярной генетики используются для современных методов идентификации микробов: методы индикации нуклеиновых кислот, полимеразная цепная реакция (ПЦР). Полимеразная цепная реакция является высокочувствительной реакцией, т.к. позволяет увеличить число копий исследуемой цепи ДНК в сотни тысяч раз за несколько часов. ПЦР может быть использована особенно тогда, когда в исследуемом материале имеется очень малые концентрации возбудителя или трудно выделить чистую культуру, а также при его высокой антигенной изменчивости.
Генетическая инженерия
Генетическая инженерия основана на создании рекомбинантных организмов, содержащих встроенные в их хромосому гены, кодирующие продукцию необходимых для производства соединений.
Последовательные этапы рекомбинации:
1) получение ДНК. Участки ДНК, то есть гены, кодирующие синтез необходимого вещества, выделяют из хромосомы путем разрезания ферментами (рестриктазами). В некоторых случаях удается получить методом химического синтеза небольшие гены, аналогичные природным;
2) полученный ген (отрезок ДНК) с помощью ферментов (лигаз) соединяют ("сшивают") с другим отрезком ДНК, который будет служить вектором для встраивания гибридного гена в клетку. В качестве вектора можно использовать плазмиды, бактериофаги, вирусы;
3) вектор, несущий встроенный в него ген, встраивается в бактериальную или животную клетку, которая приобретает способность продуцировать не свойственное этой клетке вещество. В качестве таких реципиентов используют клетки Е. coli, P. aeruginosa, дрожжи, вирус осповакцины. Подбирая подходящего реципиента, учитывают выраженность синтеза необходимого вещества. Некоторые штаммы бактерий, получивших чужой ген, способны переключать половину своего потенциала на синтез соединения, кодируемого этим геном. Учитывается также возможность секреции вещества в окружающую среду, возможность культивирования в промышленных масштабах, экологическая безопасность.
Биологические препараты, полученные методом генетической инженерии:интерфероны, интерлейкины, инсулин, гормон роста, вакцина против гепатита В, антигены ВИЧ для диагностики и другие препараты.
Методы генетической инженерии перспективны:
- для получения антигенов с целью диагностики заболеваний, возбудители которых или не культивируются на питательных средах (сифилис, малярия) или опасны для культивирования;
- для получения препаратов, сырье для которых дорогостоящее или дефицитное: интерфероны, инсулин, гормон роста, интерлейкины и другие цитокины, регулирующие иммунитет, а также антитела.
ГЛАВА11. АНТИБИОТИКИ
По современной классификации, термин «антибиотики» объединяет все лекарственные препараты, избирательно подавляющие микроорганизмы и не повреждающие органы и клетки человека. Их разделяют на следующие группы:
а) природные - продуцируемые живыми организмами;
б) полусинтетические - полученные в результате модификации структуры природных антибиотиков;
в) синтетические - полученные методом синтеза (прежнее их название - химиотерапевтические средства).
Исторически сложилось так, что вначале были получены синтетические препараты, получившие название химиотерапевтических, а лечение этими препаратами - химиотерапии. Основоположником химиотерапии является немецкий химик Пауль Эрлих (1854-1915), который установил возможность создания химических соединений, избирательно действующих на определенные виды микробов. Первыми химиотерапевтическими средствами, синтезированными Эрлихом, были
сальварсан и неосальварсан, обладающие противосифилитическим действием. Эрлих сформулировал основные положения химиотерапии, понятие об этиотропном лечении (греч. aitia - причина), направленном против возбудителей заболевания, а также впервые обнаружил явление лекарственной устойчивости микробов.
В 1932 г. Г. Домагк синтезировал первый сульфаниламидный препарат - стрептоцид. В дальнейшем были получены препараты биологического происхождения, по своей антимикробной активности на несколько порядков превосходящие синтетические препараты. Их действие основано на антагонизме микробов. Чаще всего антагонизм наблюдается среди почвенных микробов. Еще в 1887 г. Л. Пастер обнаружил подавление роста бацилл сибирской язвы гнилостными бактериями при совместном их выращивании. Идея об антагонизме микробов нашла практическое применение в трудах И.И. Мечникова, предложившего использовать антагонистическое действие молочнокислых бактерий на гнилостные микробы кишечника и путем введения лакто-бактерий изменять кишечную флору. Идея И.И. Мечникова о возможности и целесообразности направленного изменения кишечной микрофлоры и об использовании с этой целью микробов-антагонистов лежит в основе бактериотераиии (лечения живыми микробами) п современного учения об антибиотиках.
В 1929 г. английский микробиолог А. Флеминг обнаружил на чашках Петри лизис колоний золотистого стафилококка вблизи плесени Penicillium notatum и показал, что фильтрат бульонной культуры этой плесени обладал антибактериальным действием в отношении грампо-ложительных бактерий. Однако препарат пенициллина получили лишь в 1941 г. Г.У. Флори и Э. Чейн. В Советском Союзе пенициллин был получен З.В. Ермольевой в 1942 г. из плесени Penicillium crustosum.
Вслед за получением пенициллина начались и продолжаются в настоящее время широкие поиски новых антибиотических веществ природного происхождения и получение высокоактивных синтетических препаратов. Синтезированные в последнее время фторхинолоны по своей активности приближаются к антибиотикам природного происхождения.
Для оценки пригодности антибиотика к применению служит химиотерапевтический индекс. Величина индекса определяется по формуле:
Максимально переносимая доза (Dosis tolerantia)
ХТИ = -------------------------------------------------------------
Минимальная терапевтическая доза (Dosis curavita)
ХТИ должен быть не менее 3.