Глава4. физиология микроорганизмов
ГЛАВА4. ФИЗИОЛОГИЯ МИКРООРГАНИЗМОВ
Как все живые существа, микроорганизмы осуществляют процессы питания, дыхания, роста и размножения. В то же время для микроорганизмов характерны некоторые особенности, отличающие их от высших организмов. Будучи одноклеточными, микроорганизмы самостоятельно осуществляют все жизненные процессы, и регуляция этих процессов заложена в каждой клетке.
Химический состав микроорганизмов
Значительную часть клетки составляет вода - от 70 до 85% от общей массы. Вода служит средой, в которой протекают разнообразные химические процессы микробной клетки. В ней растворяются кристаллоиды, диссоциируют электролиты, формируются коллоиды. Кроме того, сама вода как химический компонент, непосредственно участвует в реакциях гидролиза белков, углеводов и липоидов. Количество воды в клетке постоянно, и это постоянство регулируется цитоплазматической мембраной.
Сухой остаток микробной клетки составляет от 15% до 30%. Из них половина приходится на белки. Это простые белки - протеины и сложные белки - протеиды. Аминокислотный состав белков характерен для различных видов микроорганизмов. Белки входят в состав ферментов. Белками являются экзотоксины, с которыми связана патогенность целого ряда микробов; белками являются многие антигены, с ними связана специфичность микробов.
Нуклеиновые кислоты являются важнейшими компонентами микробов. В ДНК зашифрована вся наследственная информация клетки, а РНК участвует в процессах считывания информации, передачи се на рибосомы и синтеза в них белка - соответственно: матричная РНК (мРНК), рибосомальная РНК (рРНК) и транспортная РНК (тРНК).
Установлено, что состав нуклеотидов ДНК, а именно соотношения гуанин + цитозин/аденин + тимин является стабильным признаком. Поэтому его можно использовать для определения таксономического положения бактерий. Например, у стафилококков процентное содержание Г+Ц-28%-39%, а у сходных с ними микрококков Г+Ц=65%-83%, следовательно, они принадлежат к разным родам.
Липиды у бактерий, не содержащих жировые вещества в виде включений, составляют около 10% сухого остатка. У бактерий, имеющих особые жировые включения, например, у микобактерий туберкулеза, количество липидов достигает 40%, что обеспечивает этим бактериям устойчивость к кислотам, щелочам, спиртам. В состав липидов входят нейтральные жиры, фосфолипиды и свободные жирные кислоты. Фосфолипиды являются составной частью цитоплазматической мембраны, принимают участие в транспорте веществ. Липиды входят в состав липополисахарида клеточной стенки грамотрицательных бактерий - это их эндотоксин и О-антиген.
Углеводы выполняют в клетке пластическую роль и являются источником энергии, необходимым для обменных процессов. Количество углеводов в клетке непостоянно даже у одной и той же бактерии (от 10% до 30%) и зависит не только от рода и вида, но и от условий развития микробов. Бактерии содержат моносахариды, дисахариды, полисахариды. У некоторых бактерий полисахаридный антиген настолько специфичен, что позволяет разграничить отдельные типы внутри вида. Например, капсульный антиген пневмококков, поверхностный С-антиген стрептококков.
Минеральные вещества микроорганизмов разнообразны, количество и состав их зависит от вида микробов и состава питательной среды. Основные элементы, необходимые для жизнедеятельности клетки - натрий, калий, фосфор, кальций, магний, железо, медь, сера, хлор, кремний. Некоторые металлы - железо, кальций - входят в состав ферментов. Фосфор входит в состав аденозинтрифосфорной кислоты, которая является своеобразным аккумулятором энергии. Ионы металлов участвуют в поддержании постоянства осмотического давления, реакции среды (рН) в клетке. Реакция цитоплазмы слабощелочная. Заряд на поверхности бактерий - отрицательный, у спирохет - положительный. Благодаря одноименному заряду, бактерии в физрастворе образуют равномерно-мутную взвесь. Склеивание их между собой и образование хлопьев наблюдается при реакции агглютинации, а также при потере поверхностного заряда клетки, например, у шероховатых R-форм бактерий.
Метаболизм (обмен веществ) микроорганизмов
Ферменты
Ферменты - катализаторы биологических процессов. Характерным свойством ферментов является их специфичность. Каждый фермент участвует только в определенной реакции с определенным химическим соединением.
Ферменты, которые выделяются бактериальной клеткой в окружающую среду и осуществляют внеклеточное переваривание, называются экзоферментами. К экзоферментам относится также беталактамаза, которая разрушает пенициллин и другие бета-лактамные антибиотики, защищая бактерии от их действия.
Эндоферменты участвуют в процессах метаболизма внутри клетки.
Для бактерий, в силу их малых размеров, характерна высокая степень саморегуляции продукции ферментов. В этом отношении ферменты можно разделить на конститутивные и адаптивные. Конститутивные ферменты продуцируются клеткой постоянно. Адаптивные ферменты, в свою очередь, подразделяются на индуцируемые и ингибируемые. Продукция индуцируемых ферментов происходит в присутствии субстрата. Например, ферменты, расщепляющие лактозу, образуются в клетке в только присутствии этого углевода. Продукция ингибируемых ферментов, напротив, подавляется присутствием в среде конечного субстрата в достаточно большой концентрации (например, трип-тофана).
Многие патогенные бактерии, кроме ферментов обмена, выделяют ферменты, являющиеся факторами вирулентности. Например, такие ферменты, как гиалуронидаза, коллагеназа, дезоксирибонуклеаза, нейраминидаза способствуют проникновению и распространению патогенного микроба в организме.
Способность бактерий продуцировать определенные ферменты -признак настолько постоянный, что его используют для идентификации, то есть определения вида бактерий. Определяют сахаролитические свойства (ферментацию углеводов) и протеолитические свойства (ферментацию белков и пептона).
Для микробов характерна высокая ферментативная активность. Это используется в промышленности. В медицине находят применение такие лечебные средства, как стрептокиназа (фибринолизин стрептококков), террилитин (протеаза Aspergillus terricola). Ферменты микробного происхождения - липазы и протеазы, входящие в состав моющих средств и стиральных порошков, расщепляют белковые и жировые загрязнения до воднорастворимых веществ, которые легко смываются водой.
Образование микробами пигментов, ароматических веществ. Светящиеся микроорганизмы
Некоторые виды микробов вырабатывают красящие вещества -пигменты. Если пигмент растворим в воде, то окрашенными представляются и колонии микробов, и питательная среда. Например, синий пигмент, выделяемый синегнойной палочкой (Pseudomonas aeruginosa), окрашивает среду в синий цвет. Пигменты, растворимые в органических растворителях, но нерастворимые в воде, не окрашивают питательную среду. Такой пигмент красного цвета, так называемый продигиозан, растворимый в спирте, выделяет чудесная палочка (Serratia marcescens). К этой же группе относятся пигменты желтого, оранжевого, красного цвета, характерные для кокковой воздушной микрофлоры. У некоторых видов микробов пигменты настолько прочно связаны с протоплазмой клетки, что не растворяются ни в воде, ни в органических растворителях. Среди патогенных бактерий такие пигменты золотистого, палевого, лимонно-желтого цвета образуют стафилококки.
Цвет пигмента используется для определения вида бактерий.
Некоторые микроорганизмы в процессе метаболизма вырабатывают ароматические вещества. Например, для синегнойной палочки характерен запах жасмина. Характерный запах сыров, сливочного масла, особый "букет" вина объясняется жизнедеятельностью микробов, которые используются для производства этих продуктов.
Свечение (люминесценция) микробов происходит в результате освобождения энергии при биологическом окислении субстрата. Свечение бывает тем интенсивнее, чем сильнее приток кислорода Светящиеся бактерии были названы фотобактериями. Они придают свечение чешуе рыб в море, грибам, гниющим деревьям, пищевым продуктам, на поверхности которых размножаются. Свечение может наблюдаться при низких температурах, например, в холодильнике. Патогенных для человека среди фотогенных бактерий не установлено.
Свечение пищевых продуктов, вызванное бактериями, не приводит к их порче, и даже может свидетельствовать о том. что в этих продуктах не происходит гниения, поскольку оно прекращается при развитии гнилостных микроорганизмов.
ГЛАВА 5.
СВОЙСТВ
Культивирование, то есть выращивание микроорганизмов в лаборатории, применяется для изучения их свойств и для получения биомассы. Бактерии, грибы, актиномицеты, спирохеты и некоторые простейшие культивируются на питательных средах. Хламидии, риккетсии, вирусы и некоторые простейшие способны размножаться только в организме животного или в живых клетках.
Культуральные свойства данного вида микроорганизмов - это: 1) условия, необходимые для размножения, и 2) характер роста на питательных средах. Культуральные свойства - это одна из характеристик, которые учитываются при идентификации (определения вида) микроорганизмов.
Питательные среды
Питательные среды должны соответствовать определенным требованиям. Они должны содержать все питательные вещества, необходимые для размножения данного вида микробов. Одни патогенные микроорганизмы растут на простых питательных средах, другие для своего размножения нуждаются в добавлении крови, сыворотки крови, витаминов.
В питательных средах должны быть созданы определенные условия путем добавления хлорида натрия или буферных растворов. Для большинства бактерий благоприятной является питательная среда, содержащая 0,5% хлорида натрия. Реакция питательной среды, благоприятная для большей части патогенных бактерий - слабощелочная, что соответствует рН=7,2-7,4. Холерный вибрион растет при рН=7,8-8,5, грибы - при рН=5-5,5. Питательные среды должны быть влажными, то есть содержать достаточное количество воды, быть по возможности прозрачными и стерильными, то есть до посева не содержать микробов.
По составу и происхождению питательные среды бывают естественные, искусственные и синтетические. Естественные питательные среды - это натуральный продукт, например, картофель, другие овощи. Искусственные питательные среды готовят по определенной прописи из продуктов с добавлением органических и неорганических соединений. Синтетические среды содержат определенные химические соединения в известных концентрациях.
По консистенции питательные среды бывают жидкие, полужидкие, плотные. В качестве уплотнителя обычно применяют агар-агар -полисахарид, выделенный из морских водорослей. Агар-агар не используется микроорганизмами в качестве питательного вещества, образует в воде гель, плавящийся при 100°С и застывающий при 45°С.
Для получения плотной питательной среды агар-агар добавляют в концентрации 1,5-2%, для полужидкой - 0,5%.
По целевому назначению питательные среды могут быть разделены на обычные (простые), специальные, элективные, дифференциально-диагностические.
Обычные (простые) питательные среды применяют для культивирования большинства микроорганизмов, это мясопептонный бульон (МПБ), мясопептонный агар (МПА).
Специальные питательные среды применяют для культивирования микроорганизмов, которые не растут на простых средах. Например, кровяной агар и сахарный бульон для стрептококка, сывороточный агар для менингококка и гонококка.
Элективные питательные среды используют для выделения одного какого-либо вида из смеси различных бактерий. Данный вид бактерий растет на этой среде быстрее и лучше других, опережая их в своем росте; рост других бактерий задерживается на этой среде. Например, свернутая сыворотка для палочки дифтерии, щелочная пептонная вода для холерного вибриона, желчный бульон для палочки брюшного тифа, солевые среды для стафилококка.
Дифференциально-диагностические питательные среды применяются для отличия одних видов бактерий от других по их ферментативной активности (см. соответствующий раздел).
Культивирование микоплазм
Микоплазмы культивируются на питательных средах с добавлением сыворотки и углеводов. Поскольку микоплазмы лишены клеточной стенки, они растут только в изотонических или гипертонических средах. На плотных питательных средах в течение нескольких суток образуются очень мелкие колонии, напоминающие яичницу-глазунью - с выпуклым центром и плоской полупрозрачной периферией. Микоплазмы можно выращивать также на курином эмбрионе или культуре клеток.
Культивирование грибов
Для культивирования грибов применяют плотные и жидкие питательные среды: чаще всего среду Сабуро, а также среды, содержащие пивное сусло. Грибы растут медленнее, чем бактерии, они образуют видимый рост в течение нескольких суток. Температура культивирования ниже, чем у бактерий - 22-30°С.
Структура бактериофагов
Размеры бактериофагов колеблются от 20 нм до 200 нм. Как все вирусы, содержат ДНК, или РНК, и белковый капсид. Чаще всего встречаются и лучше изучены бактериофаги, имеющие форму сперматозоида или головастика. Состоят они из головки, хвостового отростка, батальной пластинки с короткими шинами и хвостовыми нитями. Внутри головки располагается спирально скрученная пить ДНК, покрытая белковым капсидом. Хвостовой отросток - что полый цилиндрический стержень, окруженный сократительным чехлом. Базальная пластинка и нити осуществляют процесс адсорбции бактериофага на бактериальной клетке (рис. 9). Существуют бакте-риофаш. имеющие другое строение: с короткими отростком, с отростком без сократительного чехла, без отростка, нитевидной формы.
ГЛАВА 8.
Микрофлора почвы
Почва является основной средой обитания многих микроорганизмов, которые вместе с растениями и животными составляют разнообразные биогеоценозы. Состав микробиоценозов почвы зависит от многих внешних факторов, в том числе от агротехнических мероприятий, таких как вспашка, внесение удобрений, ядохимикатов.
Самый поверхностный тонкий слой почвы содержит мало микроорганизмов, так как они погибают под влиянием солнечных лучей и высушивания. Наиболее обильна микрофлора почвы на глубине 10-20 см, а в более глубоких слоях количество микробов уменьшается.
Видовой состав почвенной микрофлоры весьма разнообразен: анаэробные и аэробные бактерии, грибы, простейшие, вирусы.
Значение микрофлоры почвы велико для круговорота веществ в природе. Микробы осуществляют разложение и минерализацию органических животных и растительных остатков, попадающих в почву, процесс очищения ее от нечистот и отбросов.
Среди патогенных микробов имеются такие, для которых почва является постоянным местом обитания. Это возбудители ботулизма, ак-тиномицеты и грибы - возбудители микозов. Вторая группа - это спо-рообразующие бациллы и клостридии, которые попадают в почву с выделениями человека и животных и могут длительно здесь сохраняться в виде спор. Это бациллы сибирской язвы, клостридии столбняка и газовой анаэробной инфекции.
К третьей группе относятся неспорообразующие бактерии и вирусы, которые попадают в почву с выделениями человека и животных, сохраняются здесь в течение нескольких дней и месяцев. Это бактерии - возбудители брюшного тифа и дизентерии, палочки туберкулеза, лептоспиры, вирусы. Значение почвы как фактора передачи при этих инфекциях относительно невелико.
Микробиологическое исследование почвы имеет значение при строительстве жилищ, детских учреждений, водохранилищ. Пробы почвы берут из глубины. Определяют микробное число - общее количество микроорганизмов в 1 г почвы и наличие санитарно-показательных микроорганизмов. Присутствие в почве Escherichia coli и Streptococcus faecalis указывает на свежее фекальное загрязнение, бактерий рода
Citrobacter и Enterobacter - на несвежее, a Clostridium perfringens - на давнее.
Микрофлора воды
Вода открытых водоемов, подобно почве, является естественной средой обитания многих видов бактерий, грибов, вирусов, простейших. В воде обитают также различные виды микробов, принимающих участие в круговороте веществ в природе и способствующих самоочищению воды благодаря разложению органических соединений. Характер микрофлоры воды зависит от многих причин, и в особенности от загрязнения стоками ливневых, фекальных и промышленных нечистот. По мере удаления от населенных пунктов число микробов постепенно уменьшается. Наиболее чистыми являются воды глубоких артезианских скважин и родников.
Вода имеет эпидемиологическое значение как фактор передачи инфекций. Наблюдались водные эпидемии холеры, брюшного тифа, леп-тоспирозов и других инфекционных болезней.
Санитарно-гюказательными микроорганизмами для воды являются бактерии группы кишечной палочки (БГКП), принадлежащие к разным родам семейства энтеробактерий. Санитарно-микробиологическое состояние воды оценивается по следующим показателям:
1) микробное число - общее количество бактерий в 1 мл воды;
2) коли-титр - наименьший объем воды в миллилитрах, в котором обнаруживаются БГКП;
3) коли-индекс - количество БГКП в 1 литре воды;
4) кроме того, в воде определяют наличие патогенных и условнопатогенных микроорганизмов: энтерококков, сальмонелл, холерного вибриона, энтеровирусов.
В соответствии с ГОСТом на питьевую водопроводную воду, микробное число ее должно быть не более 100, коли-титр должен быть не ниже 300, коли-индекс - не более 3.
Микрофлора воздуха
В воздух микробы попадают из почвы с поверхностей растений и животных, а также с промышленными отходами некоторых предприятий. В отличие от воды и почвы, где микробы могут размножаться, в воздухе они только сохраняются в течение некоторого времени, а затем гибнут вследствие высыхания и влияния солнечных лучей. Устойчивые к таким воздействиям микроорганизмы могут долго сохраняться в воздухе. Это споры грибов, споры бактерий, сарцины и другие кокки, образующие пигменты. Больше всего микробов в воздухе промышленных городов, меньше всего - в воздухе лесов и гор. В открытом воздухе количество микробов летом больше, чем зимой, в воздухе закрытых помещений - наоборот.
Воздух может служить фактором передачи патогенных микробов: стафилококков, стрептококков, палочек дифтерии, коклюша, туберкулеза, а также вирусов кори, гриппа. Передача воздушно-капельным и воздушно-пылевым путем почти всегда происходит в закрытых помещениях и редко - на открытом воздухе.
Показатели санитарно-микробиологического состояния воздуха
закрытых помещений:
- микробное число - количество микробов, обнаруженных в 1 м3
воздуха;
- наличие санитарно-показательных бактерий: Streptococcus
haeraolyticus и Staphylococcus aureus.
Чистота воздуха зависит от своевременного проветривания помещения и влажной уборки. Применяется обработка воздуха бактерицидными УФ-лампами. Для уменьшения контаминации воздуха применяют марлевые и ватно-марлевые маски.
ГЛАВА 9.
Влияние физических факторов
Температура.Следует различать 1) температурные условия, при которых микроорганизмы растут и размножаются и 2) температурные границы, при которых микроорганизмы остаются живыми. Понятно, что во втором случае диапазон температур шире.
1) В зависимости от температурных условий, которые требуют микроорганизмы для своего роста и размножения, различают три группы: психрофилы, растущие при низкой температуре, мезофилы - при средней, и термофилы - при высокой температуре
Для психрофилов оптимальная температура для роста 10-15°С. минимальная 0-5°С, максимальная 25-30°С. Большинство из них свободноживущие и паразиты холоднокровных животных, по есть и патогенные для человека, например, иерсинии, псевдомонады. Они размножаются при температуре бытового холодильника и более вирулентны при низких температурах.
Мезофилы размножаются преимущественно в организме теплокровных животных и человека. Оптимальная температура для их роста 30-37°С, максимальная 43-45°С, минимальная 15-20°С. Большинство патогенных микроорганизмов относятся к мезофилам. В окружающей среде они обычно не размножаются, но могут сохраняться живыми.
Для термофилов оптимальная температура для роста 50-60°С, минимальная равна 45°С максимальная 90°С. Термофильные бактерии живут в юрячей воде гейзеров. Они не размножаются в организме человека.
2) Температурные зоны гибели микроорганизмов шире, чем температуры, при которых они могут расти.
Микроорганизмы более чувствительны к высоким температурам, при которых наступает их гибель вследствие свертывания белков и повреждения ферментов. Вегетативные формы бактерии погибают при 60-80°С в течение часа, при 100°С - через 1 минуту. Споры бактерий устойчивы к 100°С, например, споры палочек столбняка и ботулизма выдерживают кипячение в течение нескольких часов. Для того, чтобы убить споры, создают температуру сухого жара 160-170°С, пара под давлением 120-134°С. Высокие температуры применяют при стерилизации - обеспложивании различных материалов.
К низким температурам микроорганизмы более устойчивы. Многие из них переносят замораживание. Холерный вибрион, сальмонеллы, кишечная палочка могут сохраняться во льду. Особенно устойчивы к низким температурам споры бактерий и вирусы. В то же время есть виды микробов, не переносящих температуры ниже 20°С: менингококки, гонококки, возбудители коклюша, сифилиса.
Высушивание.Вода необходима для нормальной жизнедеятельности микробов, так как питательные вещества поступают в клетку в растворенном виде. При недостатке воды рост микробов прекращается, хотя некоторые их них остаются живыми в течение какого-то времени. Чувствительны к высушиванию менингококки, гонококки, возбудители сифилиса, коклюша, гриппа; устойчивы стафилококки, возбудитель туберкулеза. Наиболее устойчивы споры бактерий, так как вода в них находится в связанном состоянии. Для сохранения живых микроорганизмов применяют метод лиофилизации - высушивание под вакуумом из замороженного состояния. Лиофилизированные живые культуры микроорганизмов, вакцины, биопрепараты в течение ряда лет сохраняются, не изменяя своих свойств.
Действие излучений.Ионизирующая радиация - гамма-излучение радиоактивных веществ и электроны высоких энергий - губительно действуют на микроорганизмы, хотя смертельные дозы для них выше, чем для животных и растений. Ионизирующие излучения применяют для стерилизации одноразовых пластиковых шприцев и посуды, питательных сред, лекарственных препаратов.
Неионизирующие излучения- ультрафиолетовые лучи - повреждают микроорганизмы в большей степени, чем животных и растения. УФ-лучи повреждают геном микробных клеток, что приводит их к гибели. Для обеззараживания воздуха в лечебных учреждениях и в микробиологических лабораториях применяются бактерицидные лампы ультрафиолетового излучения.
Ультразвукпри определенной частоте вызывает разрушение структуры микробных клеток вследствие образования кавитационных полостей и может применяться как метод обработки пищевых продуктов.
Осмотическое давление,его постоянство, имеет большое значение для жизни микробов. При повышении или понижении осмотического давления происходит разрыв клеточной мембраны и гибель клеток. Повышенные концентрации солей задерживают развитие микроорганизмов, особенно гнилостных, что используется для сохранения впрок пищевых продуктов: овощей, грибов, рыбы, мяса. На том же принципе основано применение концентрированных растворов сахара в варенье, сиропах. Концентрированные растворы лекарственных средств растительного происхождения являются более стойкими сравнительно с разведенными растворами.
Высокое атмосферное давлениене оказывает значительного действия на микроорганизмы.
Влияние химических факторов
Химические вещества, оказывающие антимикробное действие, применяются для дезинфекции - от des (французской приставки, означающей отрицание) и inficere (лат. - заражать). С помощью дезинфекции производится уничтожение возбудителей инфекционных бо-
лезней на зараженных объектах внешней среды.
Дезинфицирующие вещества являются общетоксическими ядами, в отличие от химеотерапевтическнх средств и антибиотиков, оказыва-ющих избирательное действие на микроорганизмы. Механизм действия дезинфицирующих веществ в основном заключастся в нарушении физико-химической структуры микробной клетки
Окислители (хлор и его соединения, вещества, содержащие йод, перекись водорода) обладают повышенной способностью окислять органические соединения в микробной клетке, что приводит к ее гибели.
Вещества, свертывающие белок (фенол, крезол, гексахлорофен, лизол, спирты, соли тяжелых металлов, например, сулема), проникая в микробную клетку, вступают в соединение с ее белками, денатурируют их и таким образом нарушают жизненные функции микроорганизма.
Детергенты (поверхностно-активные вещества (ПАВ)) - вещества, обладающие высокой поверхностной активностью, моющим, а многие из них и антимикробным действием - мыла, моющие средства. Высокой активностью обладают четвертичные аммониевые основания (ЧАО), вызывающие повреждение клеточной стенки бактерий, не проникая внутрь клетки.
Некоторые металлы в незначительных количествах обладают выраженным антимикробным действием (серебро, медь, золото и другие). Объясняется это тем, что они выделяют в воду ноны Такое явление называют олигодинамическим действием (греч. oligos - малый). Достаточно ничтожною количества ионов в жидкости, чтобы они концентрировались на поверхности микробов и, изменив ее заряд с "-" на "+", оказывали антимикробное действие.
Выбор способа дезинфекции зависит от биологичсских свойств микроба и от той среды, в которой он находится. Например, сулема мало пригодна для дезинфекции белковых субстратов, таких как гной. кровь, мокрота. Под влиянием сулемы происходит свертывание белков, и свернувшийся белок предохраняет микробов от действия дезин-фектанта. Этиловый спирт используют для обеззараживания рук, различных предметов, для консервации биологических объектом. Наиболее выражено бактерицидное действие 70%-ного спирта, поскольку чистый спирт вызывает свертывание поверхностных белков бактерий и не проникает внутрь клетки.
Значительным бактерицидным действием обладает гексахлорофен, причем грамположительные кокки более чувствительны к нему, чем грамотрицательнве палочки. Гексахлорофен применяется для обеззараживания кожи в виде мыла, содержащею 2-5% этого вещества; для санации полости носа в виде мази, содержащей 1%, для санации носоглотки путем орошения с целью борьбы со стафилококковым носитель-cibom - 0,1%-ный раствор.
Стерилизация облучением
УФ-лучи.Лампы ультрафиолетового излучения используют для обеззараживания воздуха лечебных учреждений, бактериологических боксов и лабораторий, а также для стерилизации жидкостей с помощью особых аппаратов.
Стерилизации ионизирующим излучениемподвергаются в медицинской и микробиологической промышленности разнообразные объекты: лекарственные средства, перевязочные материалы, шелк, хирургические перчатки, одноразовые шприцы, пластмассовые трубки для внутривенного введения и многие другие материалы.
Применение ионизирующей радиации имеет ряд преимуществ перед тепловой стерилизацией. При стерилизации с помощью ионизирующего излучения температура стерилизуемого объекта поднимается незначительно, в связи с чем такие методы называют холодной стерилизацией. При стерилизации в больших масштабах может быть создан конвейер. Материалы стерилизуют в упакованном виде. Имеется два вида оборудования для облучения - гамма-установки с кобальтом-60 и ускорители электронов.
Холодная стерилизация
Фильтрование- освобождение жидкостей от микробов, применяется в тех случаях, когда материал не может быть подвергнут нагреванию. Фильтры должны быть настолько мелкопористыми, чтобы задерживать микробы. Бактериальные фильтры изготавливаются из мелкопористых веществ в виде фарфоровых свечей, асбестовых пластинок Зейтца или мембранных фильтров. Фильтрование производят, создавая с помощью насоса разрежение в приемнике. Перед употреблением фильтрующее устройство должно быть простерилизовано. Вирусы проходят через бактериальные фильтры, поэтому метод фильтрования можно отнести к методам частичного обеспложивания. Этот метод используют не только для стерилизации питательных сред и растворов, но и для того, чтобы освободить от микробов токсины, антибиотики, бактериофаги, вирусы.
Генетические рекомбинации
Генетические рекомбинации- (лат. recombinatio - перестановка) у бактерий - это передача генетического материала (ДНК) от клетки-донора к клетке-реципиенту, в результате появляются рекомбинанты с новыми свойствами.
Известны три типа генетических рекомбинаций: трансформация, трансдукция, конъюгация (рис.11, табл. 2).
Трансформация(лат. transforma-tio - превращение) - передача ДНК в виде свободного растворимого вещества, выделенного из клетки донора, в клетку реципиента. При этом рекомбинация происходит, если ДНК донора и реципиента родственны друг другу, и может произойти обмен гомологичных участков своей и проникшей извне ДНК. Впервые явление трансформации открыл Ф. Гриффите в 1928 г. Он ввел мышам живой невирулентный бескап-
сульный штамм пневмококка и одновременно убитый вирулентный кап-сульный штамм пневмококка Мыши погибли, из их крови была выделена живая культура вирулентного капсульного пневмококка Сам Гриффите считал, что трансформация произошла путем поглощения невирулентным пневмококком капсульного вещества вирулентного штамма Позже, в 1944 г О Эвери, К Мак Леод и М Мак-Карти доказали, что трансформирующее вещество - это ДНК, которая является носителем генетической информации Гак впервые была доказана роль ДНК как материального субстрата наследственности
Трансдукция(лат transductio - перенос) - передача ДНК от бактерии-донора к бактерии-реципиенту с помощью бактериофага Различают неспецифическую трансдукцию, специфическую и абортивную
При неспецифической трансдукции может быть перенесен любой фрагмент ДНК донора При этом ДНК донора попадает в головку бактериофага, не включаясь в его геном Принесенный бактериофагом фрагмент ДНК донора может включиться в хромосому реципиента Таким образом, бактериофаг в этом случае является только переносчиком ДНК, сама фаговая ДНК не участвует в образовании рекомбинанта
При специфической трансдукции гены хромосомы донора замещают собою некторые гены бактериофага В клетке реципиента фаговая ДНК вместе с фрагментом хромосомы донора включается в строго определенные участки хромосомы реципиента в виде профага Реципиент становится лизогенным и приобретает новые свойства
Трансдукция называется абортивной, если фрагмент ДНК, принесенный бактериофагом, не вступает в рекомбинацию с хромосомой реципиента, а остается в цитоплазме и может кодировать синтез какого-то вещества, но не реплцируется при делении, передается только одной из двух дочерних клеток и затем утрачивается.
Конъюгация (лат. conjugatio - соединение) - это переход ДНК из клетки-донора ("мужской") в клетку-реципиент ("женскую") через половые пили при контакте клеток между собой. Донором является "мужская" клетка (F+-клетка), она содержит F-фактор - половой фактор, который кодирует образование половых пилей. Клетки, не содержащие F-фактора (F--клетки), являются женскими. При конъюгации клетки-доноры соединяются с клетками-реципиентами с помощью F-пилей, через которые происходит переход ДНК. Если клетка-реципиент получает F-фактор, она становится "мужской" F+-клеткой.
Если F-фактор включен в хромосому, то бактерии способны передавать фрагменты хромосомы и называются Hfr-клетками (англ, high frequency of recombination - высокая частота рекомбинации). При конъюгации хромосома разрывается в месте нахождения F-фактора и реплицируется, причем одна нить ДНК передается в клетку реципиента, а копия остается в клетке донора. F-фактор включается в хромосому в определенном ее участке, поэтому перенос отдельных генов хромосомы совершается в строго определенное время. Таким образом, прерывая процесс конъюгации через разные промежутки времени путем встряхивания взвеси бактерий, можно выяснить, какие признаки передаются за это время. Это позволяет построить карту хромосомы, то есть последовательность расположения генов в хромосоме. Перенос всей хромосомы может длиться до 100 минут. F-фактор при этом переносится последним.
Генетическая инженерия
Генетическая инженерия основана на создании рекомбинантных организмов, содержащих встроенные в их хромосому гены, кодирующие продукцию необходимых для производства соединений.
Последовательные этапы рекомбинации:
1) получение ДНК. Участки ДНК, то есть гены, кодирующие синтез необходимого вещества, выделяют из хромосомы путем разрезания ферментами (рестриктазами). В некоторых случаях удается получить методом химического синтеза небольшие гены, аналогичные природным;
2) полученный ген (отрезок ДНК) с помощью ферментов (лигаз) соединяют ("сшивают") с другим отрезком ДНК, который будет служить вектором для встраивания гибридного гена в клетку. В качестве вектора можно использовать плазмиды, бактериофаги, вирусы;
3) вектор, несущий встроенный в него ген, встраивается в бактериальную или животную клетку, которая приобретает способность продуцировать не свойственное этой клетке вещество. В качестве таких реципиентов используют клетки Е. coli, P. aeruginosa, дрожжи, вирус осповакцины. Подбирая подходящего реципиента, учитывают выраженность синтеза необходимого вещества. Некоторые штаммы бактерий, получивших чужой ген, способны переключать половину своего потенциала на синтез соединения, кодируемого этим геном. Учитывается также возможность секреции вещества в окружающую среду, возможность культивирования в промышленных масштабах, экологическая безопасность.
Биологические препараты, полученные методом генетической инженерии:интерфероны, интерлейкины, инсулин, гормон роста, вакцина против гепатита В, антигены ВИЧ для диагностики и другие препараты.
Методы генетической инженерии перспективны:
- для получения антигенов с целью диагностики заболеваний, возбудители которых или не культивируются на питательных средах (сифилис, малярия) или опасны для культивирования;
- для получения препаратов, сырье для которых дорогостоящее или дефицитное: интерфероны, инсулин, гормон роста, интерлейкины и другие цитокины, регулирующие иммунитет, а также антитела.
ГЛАВА11. АНТИБИОТИКИ
По современной классификации, термин «антибиотики» объединяет все лекарственные препараты, избирательно подавляющие микроорганизмы и не повреждающие органы и клетки человека. Их разделяют на следующие группы:
а) природные - продуцируемые живыми организмами;
б) полусинтетические - полученные в результате модификации структуры природных антибиотиков;
в) синтетические - полученные методом синтеза (прежнее их название - химиотерапевтические средства).
Исторически сложилось так, что вначале были получены синтетические препараты, получившие название химиотерапевтических, а лечение этими препаратами - химио