Кровоснабжение и лимфоотток легких
Артериальная кровь для питания легочной ткани и бронхов поступает в легкие по бронхиальным ветвям грудной части аорты. Венозная кровь от стенок бронхов по бронхиальным венам поступает в притоки легочных вен, а также в непарную и полунепарные вены. По левой и правой легочным артериям в легкие поступает венозная кровь, которая в результате газообмена обогащается кислородом, отдает двуокись углерода и становится артериальной. Артериальная кровь из легких по легочным венам поступает в левое предсердие.
Лимфатические сосуды легких впадают в бронхолегочные, нижние и верхние трахеобронхиальные лимфатические узлы. Большая часть лимфы из обоих легких оттекает в правый лимфатический проток, от верхних отделов левого легкого лимфа оттекает непосредственно в грудной проток.
Иннервация легких
Иннервация легких осуществляется из блуждающих нервов и из симпатического ствола, ветви которых в области корня легкого образуют легочное сплетение, ветви этого сплетения по бронхам и сосудам проникают в легкое. В стенках крупных бронхов также имеются сплетения нервных волокон.
Физиология дыхания
Е. А. Воробьева, А. В. Губарь, Е. Б. Сафьянникова [4] определяют дыхание как совокупность процессов, обеспечивающих поступление в организм кислорода, использование его в окислении органических веществ и удаление из организма углекислого газа. Один из этапов дыхания – внешнее дыхание. Под внешним дыханием понимают процессы, обеспечивающие обмен газов между окружающей средой и кровью человека.
Вентиляция легких осуществляется путем периодической смены вдохов (инспирация) и выдохов (экспирация). Частота дыхательных движений в покое у здорового человека в среднем составляет 14 – 16 в минуту. Выдох обычно на 10 – 20% длиннее (дольше) вдоха.
Вентиляция легких осуществляется за счет дыхательных мышц. В акте вдоха принимают участие мышцы диафрагмы, наружные межреберные мышцы, межхрящевые части внутренних межреберных мышц. Во время вдоха эти мышцы увеличивают объем грудной полости. В акте выдоха принимают участие мышцы брюшной стенки, межкостные части внутренних межреберных мышц, эти мышцы уменьшают объем грудной полости.
Воздух, проходя через голосовые связки, принимает участие в формировании членораздельной речи, благодаря возможности изменения просвета голосовой щели мышцами гортани.
Вентиляция легких – непроизвольный акт. Дыхательные движения осуществляются автоматически, благодаря наличию чувствительных нервных окончаний, реагирующих на концентрацию углекислоты и кислорода в крови и в спинномозговой жидкости. Эти нервные чувствительные окончания (хеморецепторы) посылают сигналы об изменении концентрации углекислоты и кислорода в дыхательный центр –нервное образование в продолговатом мозгу (нижняя часть головного мозга). Дыхательный центр обеспечивает координированную ритмичную деятельность дыхательных мышц и приспосабливает дыхательный ритм к изменениям наружной газовой среды и колебаниям содержания углекислоты и кислорода в тканях организма и крови.
В нормальных условиях легкие всегда растянуты, но эластическая тяга легких стремится уменьшить их объем. Эта тяга обеспечивает отрицательное давление в плевральной полости по отношению к давлению в альвеолах легких, поэтому легкие не спадаются. При нарушении герметичности плевральной полости (например – при проникающем ранении грудной клетки) развивается пневмоторакс, и легкие спадаются.
Объем воздуха в легких в конце спокойного выдоха называют функциональной остаточной емкостью. Она составляет сумму резервного объема выдоха (1500 мл) – выводимого из легких при глубоком выдохе, и остаточного объема – остающегося в легких после глубокого выдоха (примерно 1500 мл). В течение одного вдоха в легкие поступает дыхательный объем 400 – 500 мл (при спокойном дыхании), а при максимально глубоком вдохе – еще резервный объем – примерно 1500 мл. Объем воздуха, выходящий из легких при максимально глубоком выдохе после максимально глубокого вдоха, составляет жизненную емкость легких (жел). Жизненная емкость легких составляет в среднем 3500 мл. Общая емкость легких определяется жел + остаточный объем.
Г. Л. Билич, В. А. Крыжановский [3] считают, что не весь вдыхаемый воздух достигает альвеол. Объем воздухоносных путей, в которых газообмен не происходит, называют анатомическим мертвым пространством. Газообмен также не происходит на участках альвеол, где нет контакта альвеол с капиллярами.
Воздух при вздохе через воздухоносные пути достигает легочных альвеол. Диаметр легочной альвеолы меняется при дыхании, увеличиваясь при вдохе, и составляет 150 – 300 мкм. Площадь контакта капилляров малого круга кровообращения с альвеолами около 90 кв. метров. Легочные артерии, несущие к легким венозную кровь, в легких распадаются на долевые, затем сегментарные ветви – вплоть до капиллярной сети, которая окружает легочные альвеолы.
Между альвеолярным воздухом и кровью капилляров малого круга кровообращения находится легочная мембрана. Она состоит из поверхностно-активной выстилки, легочного эпителия (клеток легочной ткани), эндотелия капилляров (клеток стенок капилляров) и двух пограничных мембран.
Перенос газов через легочную мембрану осуществляется благодаря диффузии молекул газов из-за разницы их парциального давления. Углекислота и кислород переходят из мест с более высокой концентрацией в области с более низкой концентрацией, т.е. кислород из альвеолярного воздуха переходит в кровь, а углекислота из крови проникает в альвеолярный воздух.
Каждый капилляр проходит над 5 – 7 альвеолами. Время прохождения крови через капилляры в среднем – 0,8 секунд. Большая поверхность контакта, малая толщина легочной мембраны и относительно малая скорость тока крови в капиллярах способствуют газообмену между альвеолярным воздухом и кровью. Обогащенная кислородом и обедненная углекислотой кровь в результате газообмена становится артериальной. Выходя из легочных капилляров, она собирается в легочные вены и через легочные вены попадает в левое предсердие, а откуда – в большой круг кровообращения.
Таким образом, дыхание – это совокупность процессов, обеспечивающих поступление в организм кислорода и удаление углекислого газа (внешнее дыхание), а также использование кислорода клетками и тканями для окисления органических веществ с освобождением энергии, необходимой для их жизнедеятельности (т.е. клеточное, или тканевое дыхание).
Органы дыхания состоят из дыхательных путей и парных дыхательных органов – легких. В зависимости от положения в теле дыхательные пути подразделяются на верхний и нижний отделы. Дыхательные пути представляют собой систему трубок, просвет которых формируется благодаря наличию в них костей и хрящей.
Внутренняя поверхность дыхательных путей покрыта слизистой оболочкой, которая содержит значительное количество желез, выделяющих слизь. Проходя через дыхательные пути, воздух очищается и увлажняется, а также приобретает необходимую для легких температуру.
По дыхательным путям воздух поступает в легкие, где происходит газообмен между воздушной средой и кровью. Кровь отдает через легкие избыток двуокиси углерода и насыщается кислородом до нужной организму концентрации.
Литература
1.Алкамо, Э. Анатомия : учебное пособие / Э. Алкамо. – М. : АСТ, Астрель, 2002. – 278 с. : ил.
2.Анатомия человека : карманный справочник. – М. : АСТ, Астрель, 2005. – 320 с. : ил.
3.Билич, Г. Л. Анатомия человека. Русско-латинский атлас. Цистология. Гистология. Анатомия. Справочник / Г. Л. Билич, В. А. Крыжановский. – М. : Оникс, 2006. – 180 с. : ил.
4.Воробьева, Е. А. Анатомия и физиология / Е. А. Воробьева, А. В. Губарь, Е. Б. Сафьянникова. – 2-е изд., перераб. и доп. – М. : Медицина, 1987. – 416 с. : ил.
5.Гайворонский, И. В. Анатомия дыхательной системы и сердца / И. В. Гайворонский, Г. И. Ничипорук. – М. : ЭЛБИ-СПб, 2006. – 40 с.
6.Паркер, С. Занимательная анатомия / С. Паркер. – М. : РОСМЭН, 1999. – 114 с. : ил.
7.Сапин, М. Р. Анатомия человека. В 2 кн. : учеб. для студ. биол. и мед. спец. вузов. Кн. 1 / М. Р. Сапин, Г. Л. Билич. – М. : Издательский дом «ОНИКС. 21 век» : Альянс – В, 2001. – 463 с. : цв. ил.
8. Сонин, Н.И. Биология. Человек : учебник для 8 класса / Н.И. Сонин, М.Р. Сапин. – М.: Дрофа – 2010. – 215 с.