American Work on Pernicious Anemia
The Nobel Prize and the Discovery of Vitamins
by Kenneth J. Carpenter*
Introduction
In the course of the 19th century, chemists and physiologists studying the composition of foods and the nutritional requirements of humans and animals found that our diets needed to include the complex nitrogenous compounds called "proteins" (that, with water, form the bulk of our lean tissues), together with fats, starch and sugars that all provide usable energy during their oxidation in the body. It was also realized that bones contain high concentrations of lime (calcium oxide) and phosphate salts and the body, generally, has a variety of other necessary mineral salts, though it was felt that mixed diets normally supplied adequate quantities of all these without any need for special precautions.
With hindsight, we can see repeated early observations indicating that we also had a need for some other nutrients. Thus, sailors after 10-12 weeks on dry foods, during long sailing ship voyages before the days of refrigeration, typically developed scurvy, a disease characterized by weakness, pains in the joints, loose teeth and blood spots appearing all over the body, and finally sudden death "in the middle of a sentence" from the bursting of a main artery. However, desperately ill men would recover in 10 days or so after reaching land where they could be given fresh fruit or salad greens.
Another disease that seemed to be associated with a restricted diet was beriberi, marked first by weakness and loss of feeling in the feet and legs, then varied effects including edema of the trunk, and finally difficulty in breathing and death from heart failure. It seemed to be particularly associated with a diet of rice and little else. It had been described in some of the earliest medical treatises in China and Japan, but physicians from Europe only saw it in their countries' colonies in Asia. In 1803 Thomas Christie, a physician with the British army in Sri Lanka, wrote: "the chief cause of beriberi is certainly a want of stimulating and nourishing diet... However, giving "acid fruits" which I find of great value in cases of scurvy, has no effect in beriberi... I can suppose the difference to depend on some nice chemical combination." Christie was prophetic but, for the next 100 years, scientific methods were inadequate to pursue what those "nice combinations" might be. Their very existence was also almost forgotten in the time of the Pasteurian revolution, when microbial infection came to be thought of as the likely explanation for every disease.
The Invention of the Word "Vitamin"
Many scientists in Europe, as well as in Asia, began to interest themselves in the problem of actually isolating the factor in rice polishings, with a further dream perhaps of identifying and even synthesizing it. One of these was Casimir Funk, a biochemist born in Poland but trained in several European countries, who moved to London in 1910. In the following year, he reported that he had isolated the active factor. This was, in fact, incorrect but he then went on to suggest that this material belonged to the chemical class of "amines." Further, he supposed that, just as all the constituents of proteins (i.e. amino acids) belong to the same chemical class, so would the organic trace nutrients whose deficiencies were being envisioned as the causes of diseases such as pellagra and scurvy, in addition to beriberi. He therefore coined the term "vitamine" for these "vital amines." When it was realized a few years later that others in the class were not "amines," but a word was still needed, it was shortened to "vitamin."
The Nobel Prize in Physiology or Medicine
The First Prizes
Now, at long last, we can start to consider the problem of the Committee responsible for this prize; they had not, so far, given any award relating to the discovery of the vitamins although they had been receiving nominations intermittently for the previous 14 years (for Eijkman, Funk, Goldberger, Grijns, Hopkins and Suzuki but, strangely, not for McCollum in this period). Their reluctance may have been influenced by the comments of skeptics that vitamins were only hypothetical entities postulated to explain various phenomena: "no one had ever seen one." After 1926, this was no longer true. B.C.P. Jansen and W.F. Donath, two more Dutch scientists working in Java, had finally obtained pure crystals from the fractional extraction of rice polishings; only one hundredth of a milligram was needed daily to cure a deficient pigeon, and the activity was confirmed in the following year for subsamples sent overseas.
American Work on Pernicious Anemia
The next award that we can, but only with hindsight, relate to vitamins was that given in 1934 to George Whipple, George Minot and William Murphy of the U.S.A. "for their discoveries concerning liver therapy in cases of anaemia," and the first to be divided between three people. Previously, pernicious anemia had been an incurable condition, but these workers had found that sufferers could survive if they would eat large quantities of raw liver each day, with the hope that this could soon be replaced by more potent liver extracts. There was no mention at the time of liver having a vitamin-like action since it was only essential apparently for counteracting a disease and not for meeting a requirement of normal people.